
BAD-Check§: Bulk Asynchronous Distributed Checkpointing

John Bent∗‡ Brad Settlemyer†‡ Haiyun Bao∗

Sorin Faibish∗ Jeremy Sauer† Jingwang Zhang∗

Abstract
Leadership-scale scientific simulations running as tens of

thousands of tightly-coupled MPI processes are vulnerable
to interruption due to a single process or node failure. Due
to the dependence of each state calculation on the successful
completion of each of the prior state calculations, checkpoint-
restart is the most widely-used technique to achieve fault tol-
erance. To write a consistent view of distributed state as
a checkpoint, applications typically synchronize and pause
while writing data to persistent media. In this paper we
present a transactional protocol that enables asynchronous
distributed creation of checkpoint data sets, and describe the
conditions under which it is beneficial. With simulations, we
demonstrate that scientific applications exhibiting computa-
tional variance without frequent synchronization can use our
protocol to either reduce run time by up to 27% or reduce
required storage system capability by up to 40%.

1 Introduction
Diverse computational science fields, such as climatology,
fluid dynamics, and astrophysics, use large-scale, tightly-
coupled simulations to advance scientific inquiry. Due to the
frequent MPI-based communication between processes and
the derivation of the current distributed simulation state from
all prior simulation states, checkpoint-restart has become the
dominant method for providing parallel application fault tol-
erance. In particular, scientific simulations have traditionally
relied on coordinated checkpoint construction and bulk syn-
chronous processing (BSP) in which all of the application
processes barrier, or fence, and synchronously dump their
state into one or more files. The large memory footprint re-
quired by these simulations makes it unrealistic for the com-
putation to continue while the checkpoint data is being writ-
ten. There typically is not enough spare memory space to
copy the data locally to immutable buffers that can be written
to the storage system asynchronously.

∗EMC OCTO: first.last@emc.com
†LANL HPC: {bws,jsauer}@lanl.gov
‡A portion of this work was performed at the Ultrascale Systems Re-

search Center (USRC) at Los Alamos National Laboratory, supported by the
U.S. Department of Energy contract DE-FC02-06ER25750. The publication
has been assigned the LANL identifier LA-UR-15-27175
§During the lead authors’ formative years, the word bad was ironically,

and hysterically, misappropriated by American popular culture to mean good.
Publication rights licensed to ACM. ACM acknowledges that this con-

tribution was authored or co-authored by an employee, contractor or affiliate
of the United States government. As such, the United States Government

~~~~~~~~~~~~~~~~~XXXX�~~~~~~~~~~~~~~~~~~~XX�
~~~~~~~~~~~~XXXXXXXXX�~~~~~~~~~~~~~~~~~~~~~�
~~~~~~~~~~~~~~~~~~~~~�~~~~~~~~~~~~~XXXXXXXX�
~~~~~~~~~~~~~~~XXXXXX�~~~~~~~~~~~~~~~~~~XXX�

(a) Typical Coordinated Checkpointing.

~~~~~~~~~~~~~~~~~�~~~~~~~~~~~~~~~~~~~�
~~~~~~~~~~~~�~~~~~~~~~~~~~~~~~~~~~�
~~~~~~~~~~~~~~~~~~~~~�~~~~~~~~~~~~~�
~~~~~~~~~~~~~~~�~~~~~~~~~~~~~~~~~~�

(b) Checkpointing with BAD-Check.

Figure 1: Parallel Computation and Checkpointing. The top fig-
ure shows a typical parallel application in which all processes are
limited by the speed of their slowest member. Each process is rep-
resented with a single row, computation with ’~ ’, idleness with ’X’,
and IO with �. The bottom shows the same application using BAD-
Check, in which its fast processes are freed from this dependency.

A BSP application, as shown in Figure 1a, alternates
between computational phases where simulation progress
is achieved, and checkpoint phases which serve to protect
against hardware and software failures. Between compute
and checkpoint phases occasional periods of idleness are nec-
essary as the BSP model forces fast processes to wait for slow
ones. Although some scientific applications are able to occa-
sionally re-purpose the checkpoint data for visualization and
analysis, since ideal checkpoint intervals are governed by the
leadership system’s mean time to interrupt, checkpoint fre-
quencies may be too infrequent for useful analysis, and, fur-
ther, are dependent upon the underlying machine architecture
rather than the parameters of the scientific simulation.

Beyond the lack of simulation progress during checkpoint
phases, bulk synchronous checkpoint techniques also affect
how leadership-class storage systems are designed and built.
In order to minimize the time spent writing checkpoint data,
leadership-scale system architects must design storage sys-
tems that can satisfy extremely bursty I/O bandwidth require-
ments. That is, the storage system must be designed to pro-
vide extremely high ingest bandwidth that is always avail-
able for use, even though the available peak bandwidth will
be used infrequently. Thus, even if the storage system is ac-
cessed by the entire data center, checkpoints must be serviced

retains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
PDSW2015, November 15-20 2015, Austin, TX, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-4008-3/15/11...$15.00
DOI: http://dx.doi.org/10.1145/2834976.2834981

19

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

Committed

Started

 bad_trans_start
(participants=N

bad_trans_finish
(N==participants)

bad_trans_finish
(N<participants)

Aborted

 bad_trans_abort

Figure 2: BAD Transactional States. This state-transition dia-
gram shows the valid states of BAD-Checktransactions. Notice that
BAD-Check uses reference counting to provide data consistency via
an atomic commit of a distributed set of asynchronous modifications.

immediately; otherwise, the leadership-class computer, usu-
ally the most expensive resource within the data center, will
idle which results in lost scientific productivity.

In contrast, asynchronous checkpointing, as shown in Fig-
ure 1b, has the potential to both reduce overall applica-
tion runtime and lessen the peak bandwidth requirement of
the storage system. For maximum benefit, as will be dis-
cussed further in Section 2, asynchronous checkpointing must
support prior state dependencies and also cannot create ad-
ditional copies of large data sets. In this paper we de-
scribe a new checkpointing protocol, Bulk Asynchronous
Distributed Checkpointing (BAD-Check) that satisfies these
requirements. Further, we identify the application require-
ments that enable it and quantify the degree to which these
requirements must be present in order to benefit from it.

2 Related Work
Fundamentally, there are only a few general techniques to
decrease the checkpointing overhead of large parallel ap-
plications. One technique is to increase the storage band-
width using mechanisms like burst buffers [3, 14], staging
areas [15, 16], and I/O reorganization [4, 25]. These tech-
niques are generally interested in accelerating synchronous
checkpoint performance rather than changing the checkpoint-
ing paradigm. Additionally, each of these checkpoint mecha-
nisms require the addition of dedicated resources to the com-
putation machine to improve checkpoint performance. In
contrast, BAD-Check is focused on lowering the burst band-
width requirement thereby reducing the overall required peak
storage bandwidth.

A second technique is to reduce the quantity of check-
point data using techniques such as compression [11], dedu-
plication [18], and incremental checkpointing [19]. These
techniques are largely orthogonal to our asynchronous check-
pointing scheme; further, we believe that they can be applied
to asynchronous checkpoint protocols.

bad_ret_t bad_trans_start(bad_container_t,
bad_trans_id_t, uint32_t participants, bad_mode_t);

bad_ret_t bad_trans_finish(bad_container_t,
bad_trans_id_t, int flag);

bad_ret_t bad_trans_query(bad_container_t,
bad_trans_id_t, bad_trans_status_t *);

bad_ret_t bad_write(bad_obj_t,
bad_trans_id_t, const char *buf, offset_t, ssize_t len);

bad_ret_t bad_read(bad_obj_t,
bad_trans_id_t, char *buf, offset_t, ssize_t len);

Figure 3: BAD API. The relevant details of the BAD API include
a mode to indicate read or write and a flag to indicate whether to
commit or abort an open transaction; other parameters are self-
explanatory. Many details have been elided to allow focus on the
relevant transactional features. The complete characteristics of this
API, which grew from the 2014 DOE Storage and IO FastFoward
project [1], include asynchrony, object containers, semantic objects,
hints, checksums, versioning, garbage collection, and batch IO.

A third checkpoint technique allows computation and
checkpointing to proceed mostly in parallel by protecting
the memory region and applying copy-on-write as neces-
sary [13, 21]. Although these techniques reduce idleness
as does BAD-Check, they differ by requiring available free
memory to buffer the subsequently modified memory regions
until they can be committed to persistent storage. Large
scientific applications are computationally intensive and fre-
quently under significant memory pressure. The combina-
tion of these requirements means that memory is modified
frequently and few additional resources exist for buffering.

The final checkpoint acceleration technique are IO mecha-
nisms that enable uncoordinated checkpointing [6, 24]. These
systems enable asynchronous checkpointing for individual
processes. However, these techniques also require message
logging in order to fully capture the distributed state [12]. An
additional benefit provided by these systems is that not all
processes must necessarily roll-back upon restart∗. A disad-
vantage of these systems is that complex inter-dependencies
sometimes force the roll-back to the very beginning of the
computation (i.e. without benefiting from any of the previ-
ously saved checkpoints) [23]. Our BAD-Check protocol
is similar to uncoordinated checkpointing. However, rather
than leveraging message logging, we rely on coordination
within the distributed storage system to ensure a consistent
checkpoint data set. We note that adding message logging
to BAD-Check may add further improvement by enabling
global restarts without restarting every process.

3 Design
Although most scientific simulations currently use BSP,

asynchronous programming models that scale in the pres-
ence of computational jitter [22] are increasing in impor-
tance [2, 9, 10]. To support them, and to address the lim-
ited scalability of the POSIX storage interface [7], the DOE
commissioned the Fast Forward Storage and IO project [1] to

∗Recent work [5] suggests optimizing restart can be counterproductive

20

build a new storage interface for exascale; BAD-Check grew
from this project.

Figures 2 and 3 show the protocol states and API for con-
structing a BAD-Check distributed transaction. Each partic-
ipant in a transaction must establish with its peers a version
identifier for each transaction, as well as agree on the number
of peers participating in the transaction. With this knowl-
edge, instead of simply writing to a shared file or directory,
each participant writes to a shared data set within a shared
transaction. The storage system, BAD-Check, does reference
counting on the participants and is responsible for the atomic
commit of the asynchronous distributed modifications upon
transaction completion. Comparable pseudo-code for BSP
and BAD-Check,

for ckpt in range(0,max_ckpts):
for ts in range(0,max_timesteps):

compute();
exchange(exchange_group);

if mode==BSP: # BSP mode
barrier(); # barrier
open("ckpt.%d" % ckpt);
write(data);
close();

else: # BAD-Check mode
no barrier
bad_trans_start(tid=ckpt,

participants=sizeof(exchange_group));
bad_trans_write(data);
bad_trans_finish();

shows the key absence of the barrier in the BAD-Check
branch. For clarity’s sake, we elide the opening and closing
of BAD-Check objects which could either be done within, or
outside of, the main f or loop.

This new interface does require application modifications.
We considered an interposition middleware layer that would
convert POSIX IO from unmodified applications into BAD-
Check. However, as knowledge in the middleware layer about
the number of writers to a shared file is not available, we did
not implement this.

Another challenge is that applications must agree upon
which consistent version of the data (i.e. which simula-
tion time step) to store as a checkpoint. Although this de-
cision process exists in current BSP codes, the decision will
need to be mutually agreed upon beforehand, or determined
asynchronously (using non-blocking collectives, a dedicated
thread, or both) to be consistent with asynchronous program-
ming models.

4 BAD Experimental Methods
To evaluate our design, we characterized the run time behav-
ior of HIGRAD/FIRETEC, a computational fluid-dynamics
model used at Los Alamos National Laboratory to study the
multi-dimensional interactions between fire and its environ-
ment [8] using a Python-based simulation package. The sim-
ulator, modeling HIGRAD/FIRETEC, models a square num-
ber of processes, Job Size. Each process computes on a
region of a two-dimensional virtual grid (e.g. representing a
wildfire burning through a forest). Initially, each process’s
time is spent in a calculation phase, which we refer to as a
timestep. Each processes simulated time in each timestep

value is calculate by randomly adjusting Compute Time
with a variance between +/-Compute Variance (i.e. be-
tween 5 to 7 seconds). Following the calculation, the pro-
cesses immediately enter a message passing phase with a con-
figurable number of neighbors, Comm Size. This messag-
ing synchronizes all processes within a communication group

The simulated processes repeat this cycle Timesteps
Per Ckpt times and then simulate the time required to
create a checkpoint. In the BSP simulation, the processes
barrier before each checkpoint. The checkpoint time is
Checkpoint Time without any variance (we explain the
reasoning behind this decision later). The complete work-
load finishes after Runtime checkpoints. The final impor-
tant detail of the simulator is that the initially randomly as-
signed Compute Time values are periodically shifted by
some number of cells every some number of timesteps; this
simulates the movement of hot spots throughout the computa-
tional grid. Table 1 summarizes each simulation input param-
eter, describes the application characteristic the parameter is
designed to control, and defines the default value used as in-
put to the simulator. Default values are based on observations
of HIGRAD/FIRETEC.

Figure 1 shows this basic workflow for two checkpoint
phases comparing them for BSP and BAD-Check. In this
contrived example, the reason that BAD-Check finishes ear-
lier is that there is large compute variance and that the fastest
process in the first checkpoint phase becomes the slowest pro-
cess in the second. As described earlier, BAD-Check cannot
significantly reduce the runtime for workloads with frequent
global communication. Our simulation experiments are de-
signed to identify and quantify the degree to which various
asynchronous program characteristics enable the BAD-Check
protocol to improve overall performance by allowing check-
point phases to proceed without synchronization.

5 BAD Results

Using parameter sweeps of each of these application charac-
teristics, we have quantified the types of workloads which can
benefit from BAD-Check as well as quantifying the degree to
which they can do so. Visualizing how BAD-Check improves
total throughput, Figure 4 shows a small sample of snapshots
of application progress through thirty checkpoint phases us-
ing BAD-Check on the left and BSP on the right. Each suc-
cessive downward frame shows elapsed progress from the one
above. Within each frame each process is shown as a colored
cell with its position within the 2D computational grid cor-
responding to its position in the x and y axes. The height
of each cell shows that process’ progress towards workload
completion; the numbers on the z-axes represent the check-
point phase. The color of each cell represents each process’s
progress relative to each other; red for fast and blue for slow.
When all cells are red, they are converged; when all are blue,
they have not yet begun.

The first two rows show that BAD-Check and BSP perform
identically until they reach their first checkpoint at which

21

PARAMETER DESCRIPTION DEFAULT
Compute Time The simulated amount of compute time within each timestep. 6 seconds
Compute Variance The maximum randomized difference between compute timesteps. 16.7%
Timesteps Per Ckpt The simulated number of timesteps between checkpoints. 45
Checkpoint Time The simulated checkpoint latency. 30 seconds
Checkpoint Variance The maximum randomized difference between checkpoints. 0%
Runtime The total simulated runtime. 300 Checkpoints
Job Size The number of processes in the simulated 2D compute grid. 10242

Hotspot Movement The speed of hotspot movement within the 2D compute grid. 1:1
Comm Size The size of peer groups exchanging data between timesteps. Neighbors

Table 1: Simulation Parameters. This table lists characteristics which affect a workload’s ability to benefit from BAD-Check, as well as the
default values used in the simulation study. Defaults were derived from observations of the HIGRAD/FIRETEC application [8]. Notice that
the defaults result in the application checkpointing for approximately 10% of its runtime as is typical of large parallel applications [17, 20].

Figure 4: Time Elapsed Progress. These pictures show
application progress (from top to bottom) through thirty check-
points using BAD-Check on the left and BSP on the right. The
y-axis shows the current checkpoint; notice how the frequent BSP
synchronizations (i.e. the flat planes) slow its progress. These
pictures are extracted frames from a full video available here:
http://johnbent.com/badcheck.gif

point each process in BAD-Check continues at its current
rate whereas the fast processes in BSP must wait in order to
converge with their slower siblings as is shown in the fourth
row. Following the initial checkpoint, it is obvious how the
BAD-Check processes continue to benefit from asynchrony
whereas the BSP processes are more tightly coupled.

5.1 BAD Application Characteristics

The results of our simulated measurements are shown in Fig-
ure 5. For all figures, the y-axis shows the normalized total
runtime of BAD-Check relative to BSP (lower is better). For
all experiments, the values for all variables with the exclusion
of the particular independent variable were set to their default
values as shown in Table 1.

Figure 5a studies the effect of computational variance be-
tween the processes and shows that BAD-Check is only ben-
eficial when there such variance exists. This is intuitive be-
cause processes that proceed at the same rate will arrive at
the checkpoint phase simultaneously thereby preventing any
asynchrony from entering the system. Other experiments, not
shown, included checkpoint variance, which furthers improve
the performance gains possible with BAD-Check. However,
to focus our study on computational variance we eliminated
checkpoint variance from these experiments.

Figure 5b similarly shows that BAD-Check relies on the
cooperative processes becoming skewed. In this figure, the
x-axis is the number of siblings with whom messages are ex-
changed during the compute phase. Since message passing
is synchronous and blocking for most message passing inter-
faces, when the application does global message passing, all
processes effectively proceed through the computation at the
same rate and arrive simultaneously at each checkpoint. Con-
versely, local message passing in which data is only passed to
immediate neighbors, as is done in many applications includ-
ing HIGRAD/FIRETEC, allows the skew integral to BAD-
Check to build within the system.

Figure 5c graphs the third of our experiments measuring
the importance of skew. In this graph, the x-axis is the speed
with which hotspots move throughout the computation. Max-
imum benefit from BAD-Check is possible when hotspots
move neither too slowly nor too quickly relative to the check-
point frequency. When hotspots move too slowly (as on the
left-side of the graph), then total runtime cannot be improved
since the processes which start slow never become fast and
will never converge with their faster siblings. Conversely,
hotspots which move too quickly also reduce skew: when ev-
ery process is both slow and fast within the same compute
phase, they effectively arrive simultaneously at the check-

22

 60

 80

 100

 0 25 50 75N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e
 %

(a) Compute Variance (%)

NeighborsGlobal

(b) Comm Size

1:16 1:4 1:1 4:1

(c) Hotspot Movement
(cells:timestep)

 0 100 200 300

(d) Runtime (# checkpoints)

16 64 256 1024

 60

 80

 100

(e) Job Size (sqrt(np))

Figure 5: BAD Performance. The ability of BAD-Check to reduce workload runtimes depending on different workload characteristics.

point. In our experiments, hotspots that moved at the rate
of the checkpoints maximized runtime improvements.

Figures 5d and 5e show the scalability of BAD-Check as
a function of both runtime and job size respectively. Larger
jobs benefit more as there will be more skew and longer run-
ning jobs benefit more than shorter running jobs until they
flatten at the maximum benefit which is related to the average
skew across processes.

 60

 80

 100

 120

 0 20 40 60 80 100

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e
 (

%
)

Normalized Storage Performance (%)

Figure 6: BAD Efficacy. This graph shows how BAD-Check can
be used either to improve performance or to reduce the capabilities
of the storage system without reducing performance.

The previously described experiments examined the poten-
tial for performance improvements. We now consider another
possible benefit of BAD-Check which is to reduce the capa-
bility of the storage system (thereby reducing the total cost
of ownership of the storage) without sacrificing performance.
These results are shown in Figure 6. As before the y-axis is
the normalized runtime; the x-axis however is the normalized
capability of the storage system. Using our default parame-
ters, we find that the capability of the storage system can be
reduced by 40% without sacrificing performance.

6 Conclusions
“He’s a big bad wolf in your neighborhood;
not bad meaning bad but bad meaning good.”
Run DMC, from ’Peter Piper’

We have presented a design of an alternative storage in-
terface which uses distributed asynchronous transactions to
allow uncoordinated checkpointing. With simulated experi-
ments, we determined the characteristics which allow work-
loads to benefit from uncoordinated checkpointing:

1. Computational variation exists between checkpoints.
2. This variation moves from one process to another.
3. Message exchange is not globally synchronous.

Although many may assume that applications with these
characteristics are rare, our simulations, based on observa-
tions of the HIGRAD/FIRETEC application, achieved up to
18% improvements in total runtime. With more extreme com-
putational variance, we measured runtime improvements up
to 27%. To understand the significance of this performance
improvement we presented our findings to members of the
HIGRAD/FIRETEC team; one of whom responded,

“ We have taken serious measures (under synchronous io)
to ensure great load-balancing. However in multiphysics
scenarios (e.g. Monte Carlo radiation calculation in fire
scenarios, or what is essentially lagrangian particle track-
ing for wind turbine blade elements) we can turn the dif-
ficult algorithm-disparity, load balancing nightmare into
a benefit, by dynamically allowing those types of tasks to
be performed by the fastest arriving cores and providing
some overlap time for slow arriving cores to catch up.
Essentially we could create the same types of imbalance
we struggle so hard to circumvent now. ” LANL scientist.

This note confirms our suspicion that reducing computa-
tional variance is difficult. Fortunately, by using uncoordi-
nated checkpointing, reducing computational is not required
in order to construct consistent checkpoints. Further, we be-
lieve that efforts to reduce this variance are increasingly futile
as the scale, processing heterogeneity, and jitter of systems
increases in the pursuit of exascale.

However, modifying applications to use uncoordinated
checkpoint remains significantly challenging. A better
method for adopting efficient, uncoordinated checkpoint
techniques, of which BAD-Check is one, is to integrate them
into emerging task-based parallel programming models such
as Legion [2] that embrace asynchrony.

23

References
[1] E. Barton, J. Bent, and Q. Koziol, “Fast forward storage and io program

documents,” in LLNS subcontract no. B599860 For Extreme-Scale Com-
puting Research and Development (Fast Forward) Storage and I/O, 2014.
[Online]. Available: https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+
Storage+and+IO+Program+Documents

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 66:1–66:11. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2388996.2389086

[3] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic, and J. Woodring,
“Jitter-free co-processing on a prototype exascale storage stack,” in Mass Storage
Systems and Technologies (MSST), 2012 IEEE 28th Symposium on, April 2012,
pp. 1–5.

[4] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “PLFS: a checkpoint filesystem for parallel
applications,” in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, ser. SC ’09. New York, NY, USA: ACM,
2009, pp. 21:1–21:12. [Online]. Available: http://doi.acm.org/10.1145/1654059.
1654081

[5] J. Bent, B. Settlemyer, N. DeBardeleben, S. Faibish, D. Ting, U. Gupta,
and P. Tzelnic, “On the non-suitability of non-volatility,” in 7th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 15). Santa
Clara, CA: USENIX Association, Jul. 2015. [Online]. Available: https:
//www.usenix.org/conference/hotstorage15/workshop-program/presentation/bent

[6] B. Bhargava and S.-R. Lian, “Independent checkpointing and concurrent roll-
back for recovery in distributed systems-an optimistic approach,” in Reliable Dis-
tributed Systems, 1988. Proceedings., Seventh Symposium on, Oct 1988, pp. 3–12.

[7] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler,
“The scalable commutativity rule: Designing scalable software for multicore
processors,” in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, ser. SOSP ’13. New York, NY, USA: ACM, 2013, pp. 1–17.
[Online]. Available: http://doi.acm.org/10.1145/2517349.2522712

[8] J. J. Colman and R. R. Linn, “Separating combustion from pyrolysis in
higrad/firetec,” International Journal of Wildland Fire, vol. 16, no. 4, pp.
493–502, 2007. [Online]. Available: http://dx.doi.org/10.1071/WF06074

[9] R. Cook, E. Dube, I. Lee, C. Shereda, F. Wang, and L. Nau, Survey of Novel
Programming Models for Parallelizing Applications at Exascale, Nov 2011.
[Online]. Available: http://www.osti.gov/scitech/servlets/purl/1107306

[10] A. Hammouda, A. Siegel, and S. Siegel, “Overcoming asynchrony: An analysis
of the effects of asynchronous noise on nearest neighbor synchronizations,”
in Solving Software Challenges for Exascale, ser. Lecture Notes in Computer
Science, S. Markidis and E. Laure, Eds. Springer International Publishing,
2015, vol. 8759, pp. 100–109. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-15976-8 7

[11] D. Ibtesham, D. Arnold, K. B. Ferreira, and P. G. Bridges, “On the viability
of checkpoint compression for extreme scale fault tolerance,” in Proceedings
of the 2011 International Conference on Parallel Processing - Volume 2, ser.
Euro-Par’11. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 302–311. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-29740-3 34

[12] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359545.359563

[13] K. Li, J. F. Naughton, and J. S. Plank, “Real-time, concurrent checkpoint
for parallel programs,” in Proceedings of the Second ACM SIGPLAN
Symposium on Principles &Amp; Practice of Parallel Programming, ser. PPOPP
’90. New York, NY, USA: ACM, 1990, pp. 79–88. [Online]. Available:
http://doi.acm.org/10.1145/99163.99173

[14] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and
C. Maltzahn, “On the role of burst buffers in leadership-class storage systems,”
in In Proceedings of the 2012 IEEE Conference on Massive Data Storage, 2012.

[15] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible io
and integration for scientific codes through the adaptable io system (adios),” in
CLADE ’08: Proceedings of the 6th international workshop on Challenges of
large applications in distributed environments. New York, NY, USA: ACM,
2008, pp. 15–24.

[16] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing system,”
in Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.18

[17] NERSC and the Alliance for Computing at Extreme Scale, Trinity / NERSC-8
Request for Proposal, 2013. [Online]. Available: http://www.nersc.gov/users/
computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/

[18] B. Nicolae, “Towards Scalable Checkpoint Restart: A Collective Inline Memory
Contents Deduplication Proposal,” in IPDPS ’13: The 27th IEEE International
Parallel and Distributed Processing Symposium, Boston, United States, May
2013, pp. 19–28. [Online]. Available: https://hal.inria.fr/hal-00781532

[19] B. Nicolae and F. Cappello, “Ai-ckpt: Leveraging memory access patterns
for adaptive asynchronous incremental checkpointing,” in Proceedings of the
22Nd International Symposium on High-performance Parallel and Distributed
Computing, ser. HPDC ’13. New York, NY, USA: ACM, 2013, pp. 155–166.
[Online]. Available: http://doi.acm.org/10.1145/2462902.2462918

[20] Oak Ridge, Argonne, and Livermore National Labs, CORAL Request for
Proposal B604142, 2014. [Online]. Available: https://asc.llnl.gov/CORAL/

[21] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and implementation
of zap: A system for migrating computing environments,” SIGOPS Oper.
Syst. Rev., vol. 36, no. SI, pp. 361–376, Dec. 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844162

[22] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing supercomputer
performance: Achieving optimal performance on the 8,192 processors of asci q,”
in Supercomputing, ser. SC ’03. New York, NY, USA: ACM, 2003, pp. 55–.
[Online]. Available: http://doi.acm.org/10.1145/1048935.1050204

[23] B. Randell, “System structure for software fault tolerance,” in Proceedings of the
International Conference on Reliable Software. New York, NY, USA: ACM,
1975, pp. 437–449. [Online]. Available: http://doi.acm.org/10.1145/800027.
808467

[24] R. Riesen, K. Ferreira, D. Da Silva, P. Lemarinier, D. Arnold, and
P. G. Bridges, “Alleviating scalability issues of checkpointing protocols,” in
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2012, pp. 18:1–18:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389021

[25] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o
in romio,” in Proceedings of the The 7th Symposium on the Frontiers
of Massively Parallel Computation, ser. FRONTIERS ’99. Washington,
DC, USA: IEEE Computer Society, 1999, pp. 182–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795668.796733

24

https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Program+Documents
https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Program+Documents
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://doi.acm.org/10.1145/1654059.1654081
http://doi.acm.org/10.1145/1654059.1654081
https://www.usenix.org/conference/hotstorage15/workshop-program/presentation/bent
https://www.usenix.org/conference/hotstorage15/workshop-program/presentation/bent
http://doi.acm.org/10.1145/2517349.2522712
http://dx.doi.org/10.1071/WF06074
http://www.osti.gov/scitech/servlets/purl/1107306
http://dx.doi.org/10.1007/978-3-319-15976-8_7
http://dx.doi.org/10.1007/978-3-319-15976-8_7
http://dx.doi.org/10.1007/978-3-642-29740-3_34
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/99163.99173
http://dx.doi.org/10.1109/SC.2010.18
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/
https://hal.inria.fr/hal-00781532
http://doi.acm.org/10.1145/2462902.2462918
https://asc.llnl.gov/CORAL/
http://doi.acm.org/10.1145/844128.844162
http://doi.acm.org/10.1145/1048935.1050204
http://doi.acm.org/10.1145/800027.808467
http://doi.acm.org/10.1145/800027.808467
http://dl.acm.org/citation.cfm?id=2388996.2389021
http://dl.acm.org/citation.cfm?id=795668.796733

	Introduction
	Related Work
	Design
	BAD Experimental Methods
	BAD Results
	BAD Application Characteristics

	Conclusions

