STATE

UNIVERSITY

A Generic Framework for Testing
Parallel File Systems

Jinrui Caot, Simeng Wangt, Dong Dait, Mai Zhengt, and Yong Chen¥
t Computer Science Department, New Mexico State University
T Computer Science Department, Texas Tech University

Presented by Simeng Wang
SC16’ PDSW-DISCS
11. 14. 2016.

Motivation

Subject: Update: HPCC Power Outage
Date: Monday, January 11, 2016 at 8:50:17 AM Central Standard Time
From: HPCC - Support

Attachments: image001.png, image003.png

Jan, 2016 @HPCC:

power outageleadto
High Performance Computing Center unmeasurable dataloss

S) N
* TEXAS TECH UNIVERSITY

t @ Information Technology Division

To All HPCC Customers and Partners,

As we have informed you earlier, the Experimental Sciences Building experienced a major power outage
Sunday, Jan. 3 and another set of outages Tuesday, Jan. 5 that occurred while file systems were being
recovered from the first outage. As a result, there were major losses of important parts of the file systems for
the work, scratch and certain experimental group special Lustre areas.

The HPCC staff have been working continuously since these events on recovery procedures to try to restore
as much as possible of the affected file systems. These procedures are extremely time-consuming, taking
days to complete in some cases. Although about a third of the affected file systems have been recovered,
work continues on this effort and no time estimate is possible at present.

2
e

Motivation

o Existingmethods fortesting storage systemsare notgood enough for large-
scale parallel file systems (PFS)

> Modelchecking[e.g., EXPLODE@QOSDI'06]
» difficultto build a controllable modelfor PFS
» State explosionproblem

> Formal methods[e.g., FSCQ@SOSP’15]
+ challengingto write correct specifications for PFS

> AutomaticTesting[e.g., TorturingDB, CrashConsistency@OSDI’14]
» Closelytiedto local storagestack:intrusivefor PFS
» onlyworkfor single-node

3
1

Our Contributions

a A genericframeworkfor testingfailure handling of parallel file system
> Minimalinterference & high portability
+» decouple PFS from the testing framework through a remote storage
protocol (iSCSI)
> Systematicallygenerate failure events with high fidelity
» fine-grained, controllablefailureemulation
- emulaterealisticfailure modes

o Aninitial prototype for Lustrefile system
> Uncover internal I/O behaviors of Lustre under different workloads and
failure conditions

Outline

o Design
> Virtual Device Manager
> Failure State Emulator
> Data-Intensive Workloads
> Post-Failure Checker
a Preliminary Experiments

a Conclusionand Future Work

Outline

o Design
> Virtual Device Manager
> Failure State Emulator
> Data-Intensive Workloads
> Post-Failure Checker
a Preliminary Experiments

a Conclusionand Future Work

Overview

Testing Framework

Data-Intensive Workload

Post-Failure Checker

‘ ------------------------------------

Lustre Nodes

-

>

(&

’________‘

J

Device File

MGT: Management Target
MDT: Metadata Target
OST: Object Storage Target

MGS: Management Server
MDS: Metadata Server
OSS: Object Storage Server

Overview

Lustre Nodes

—

MGS MDS 0SS 0SS

0SS

MGT MDT OST OST

OST

—

Virtual Virtual N Virtual
Device Device M Device

Testing Framework

Data-Intensive Workload

Post-Failure Checker

~
J

Virtual Device I\/Ianager

o Createsand maintainsdevice files for storage devices.
o Mounted to Lustre nodesas virtual devices via iSCSI.
a I/O operations aretranslatedinto disk I/O commands

o Log commandsintoa command history log

> Include nodelDs, commanddetails, and actual data transferred

> Used by the Failure State Emulator

Overview

Testing Framework

Lustre Nodes B Data-Intensive Workload

MGS

MDS

0SS 0SS 0SS - Post-Failure Checker

MGT

MDT

OST OST OST : [)|

R |

Virtual
Device

Virtual N Virtual
Device M Device

|
Virtual Virtual
Device Device

Failure State Emulator

a Generatefailureeventsina systematicand controllable way.

> Manipulate I/O commandsand emulatesfailure state of each individual device

> Emulate four realistic failure modes based on previous studies [e.g., FAST'13,

OSDI'14, TOCS’16, FAST’16]

1.Whole Device Failure
Device becomes invisible to the host
2.Clean Termination of Writes
Emulates simplest power outage
3.Reordering of the Writes

Commits writes in an order different from the issuing order

4.Corruption of the Device Block
Change content of writes

11
e

Overview

Lustre Nodes M Data-Intensive Workload

Post-Failure Checker

MGS MDS 0SS 0SS 0SS -

MGT MDT OST OST OST

Virtual Virtual N Virtual Virtual Virtual
Device Device M Device Device Device

Vs
.

~N
J

Device File

Co-design Workloads and Checkers

a Data-Intensive workloads

~ Stress Lustre and generate 1/O operations to age the system and bring it
to a statethat may be difficultto recover

> May use existing data-intensive workloads

> Mayinclude self-identification/verification information

a Post-Failure Checkers

> examinesthe post-failurebehaviorand checkifit can recover withoutdataloss

» May use existing checkers (e.g.,, LFSCK for Lustre)

13
1

Outline

>
a Preliminary Experiments

a Conclusionand Future Work

14

Preliminary Experiment

o Experimentsetup

> Cluster of seven VMs, installed with CentOS 7.
> Lustrefile system (version 2.8) on five VMs.
> One MGS/MGT node, one MDS/MDT node, and three OSS/OST nodes.
> Sixth VM: hosts the Virtual Device Manager and the Failure State
Emulator
» Virtual Device Manager is built on top of the Linux SCSI target framework
> Last VM: used as clientfor launchingworkloadsand LFSCK

- Data-Intensive Workload, Post-Failure Checker

15 L

Preliminary Experiment

a Workloads
> Normal Workloadsranon Lustre
Workload Description
Montage/m101 astronomical image mosaicengine
cp copy a fileinto Lustre
tar decompress a file on Lustre
rm delete a file from Lustre

> Post-Failure Workloadsran on Lustre

Operation

Description

Ifs setstripe
dd-nosync
dd-sync
LFSCK

set striping pattern

create & extend a Lustrefile
create & extend a Lustrefile
check & repair Lustre

16
e

Preliminarx Results

a Internal Pattern of Writes without Failure

> Numbers of bytes (MB) writtento different Lustre nodes
under different workloads.

> Montage/m101is spiltinto twelve steps (i.e.,s1to s12)

to show thefine-grained write pattern.

Luster
Nodes

cp

tar

m

Montage/m101

sl

s2

s3

s4

s5

s6

s/

s8

s9

s10

s11

s12

MGS/MGT

0

0

0

0

0

0

0

MDS/MDT

0.1

0.2

0.4

0.5

0.6

0.7

1

6

1

OSS/0ST#1

14

14

28

14

66

14

66

18

66

18

94

56

94

OSS/OST#2

15

14

15

14

43

14

31

14

31

19

31

19

109

19

110

OSS/OST#3

16

16

24

16

24

17

24

21

24

21

49

58

49

17

Preliminarx Results

a Internal Pattern of Writes without Failure

> Accumulated numbers of bytes (KB) written to

differentnodesduringthe workloads.

1.6e+05

1.4e+05 -

)

B
[
N
(1]
o+
o
w

le+05

8e+04

6e+04

accumlulated bytes (K

4e+04

2e+04

18

MDS/MDT —— OSS/OST #2

OSS/OST #1 —<— OSS/OST #3

1 1

5e+08 le+09 1.5e+09 2e+09
time (microseconds)

2.5e+09 3e+09

Preliminarx Results

a Post-Failure Behavior

o Emulate a whole device failure on MDS/MDT node

a Runoperationson Lustre after the emulated device failure

> dd-nosyncmeans usingdd to create and extend a Lustre file

> dd-sync meansenforcing synchronous writeson the dd command
> Thelastcolumn shows whether the operationreported erroror not

Operation Description Report
Error?
Ifs setstripe setstripingpattern No
dd-nosync create & extenda Lustrefile No
dd-sync |create & extenda Lustrefile Yes
LFSCK check & repairLustre No

Outline

Q

a Conclusionand Future Work

20
1

Conclusion and Future Work

a Proposedand prototypeda framework fortesting failure handling of
large-scale parallel file systems.

a Uncoveredinternal behaviorstowards workloadsunder normaland
failure conditions

a More effective post-failure checking operations

a Morefilesystems(e.g., PVFS, Ceph)

a Explore novel mechanismsto enhance theresilience of large-scale

parallel file systems

Thank You!
Questions ?

