Optimized Scatter/Gather Data Operations for Parallel Storage

Latchesar Ionkov Carlos Maltzahn Michael Lang
Los Alamos National Laboratory University of California Los Alamos National Laboratory
Los Alamos, NM 87545 Santa Cruz, CA 95064 Los Alamos, NM 87545

lionkov@lanl.gov

ABSTRACT

Scientific workflows contain an increasing number of interacting
applications, often with big disparity between the formats of data
being produced and consumed by different applications. This mis-
match can result in performance degradation as data retrieval causes
multiple read operations (often to a remote storage system) in order
to convert the data. Although some parallel filesystems and middle-
ware libraries attempt to identify access patterns and optimize data
retrieval, they frequently fail if the patterns are complex.

The goal of ASGARD is to replace I/O operations issued to a file by
the processes with a single operation that passes enough semantic
information to the storage system, so it can combine (and even-
tually optimize) the data movement. ASGARD allows application
developers to define their application’s abstract dataset as well as
the subsets of the data (fragments) that are created and used by the
HPC codes. It uses the semantic information to generate and execute
transformation rules that convert the data between the the memory
layouts of the producer and consumer applications, as well as the lay-
out on nonvolatile storage. The transformation engine implements
functionality similar to the scatter/gather support available in some
file systems. Since data subsets are defined during the initialization
phase, i.e., well in advance from the time they are used to store and
retrieve data, the storage system has multiple opportunities to op-
timize both the data layout and the transformation rules in order to
increase the overall I/O performance.

Inorder to evaluate ASGARD’s performance, we added support for
ASGARD’s transformation rules to Ceph’s object store RADOS. We
created Ceph data objects that allow custom data striping based on
ASGARD’s fragment definitions. Our tests with the extended RADOS
show up to 5 times performance improvements for writes and 10
times performance improvements for reads over collective MPI1/O.

ACM Reference format:

Latchesar Ionkov, Carlos Maltzahn, and Michael Lang. 2017. Optimized
Scatter/Gather Data Operations for Parallel Storage. In Proceedings of PDSW-
DISCS’17: Second Joint International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems, Denver, CO, USA, November 12-17, 2017
(PDSW-DISCS’17), 6 pages.

DOI: 10.1145/3149393.3149397

ACM acknowledges that this contribution was authored or co-authored by an
employee, or contractor of the national government. As such, the Government retains
anonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
PDSW-DISCS’17, Denver, CO, USA

© 2017 ACM. 978-1-4503-5134-8/17/11...$15.00

DOI: 10.1145/3149393.3149397

carlosm@cs.ucsc.edu

mlang@lanl.gov
1 INTRODUCTION

Advances in computer hardware have led to major increases of the
size of numerical simulations run on supercomputers. Future exas-
cale systems will need hundreds of petabytes of storage to satisfy the
requirements for scratch space [9]. In order to perform at that scale,
future supercomputers will likely employ complex hierarchies of
both volatile and nonvolatile memories. Architectures such as burst
buffers [14] deliver performance at the cost of complexity.

In the past, most data analysis and visualization was a post-
processing step. Due to the scale as, well as the higher cost for data
movement, in situ and in-transit data processing are more attractive.
In many cases, the visualization and analysis applications need only
a small subset of the data produced by the application, but since data
layout is optimized to increase the simulation’s performance, read-
ing the required subset of the data may reduce overall performance
of the storage system.

HPC applications store datasets in a single file (N-to-1), one file
per process (N-to-N), or a few files (N-to-M). In many cases, as data is
saved infiles, the semantic metadata doesn’t reach the storage system.
Many storage systems try to find temporal patterns in the operations
so they can predict the future operations and improve I/O perfor-
mance, but with little knowledge of the overall structure of the data
and the application’s requirements, these predictions often fail [11].

ASGARD allows developers to define an abstract description of
the data produced by the application. They can also provide defini-
tions of the subsets (fragments) of the data used by each process, as
well as by other visualization and analysis applications. ASGARD
uses a data declaration language that has syntax familiar to most
software developers. In addition to a predefined set of primary types,
it supports multi-dimensional arrays as well as collections of related
fields (i.e., records or structs). The fragments of the dataset are made
up of subsets of arrays, records, or combinations of both.

Once the dataset and its fragments are declared, ASGARD pro-
vides functionality to query how to convert the content of one frag-
ment to another. ASGARD defines transformation rules, which de-
scribe the conversion between two fragments. The values required
for fragment materialization might not be located in a single frag-
ment, so ASGARD allows the user to get a list of the fragments
required to produce a specific fragment.

ASGARD is based on DRepl [13], which is designed to separate the
application’s view of the data from the storage layout and support
divergent data replication. ASGARD uses the same dataset language
and parser. It extends DRepl by providing support for dynamic frag-
ment definitions, and functionality for transforming and gathering
data from multiple data fragments. While DRepl provides a POSIX
API for accessing the data as files, ASGARD avoids the file interface
and focuses on the data layout in application memory and how to
transform it optimally to the layout on persistent storage.

PDSW-DISCS’17, November 12-17, 2017, Denver, CO, USA

In order to decrease network usage, ASGARD splits the trans-
formation rules into two parts. Remote rules are executed on the
server where the source fragment is located and produce a compact
representation of the data for the destination fragment. Once the
compact representation is received, ASGARD applies local rules to
copy the parts of the source fragment to the appropriate locations in
the destination fragment. ASGARD, in a sense, provides an extension
to the standard scatter/gather operations. The transformation rules
allow compact definition of complex patterns. The combination of
gather (on the side where the data is stored) and scatter (on the side
where data is used) provides a powerful tool for transforming data
from the format in which it is produced to a format suited for con-
sumption. The fact that the fragments are defined in advance allows
an active storage subsystem to perform optimizations that might be
too slow or costly if run at the time the operations are executed.

In order to evaluate ASGARD’s benefits, we modified Ceph’s [17]
RADOS object store system to support ASGARD’s transformation
rules for storing and retrieving data to objects. We also created a
custom object class that allows developers to define an object that rep-
resents an ASGARD dataset and how it is partitioned into stripes on
storage. Each of the stripes is defined as ASGARD’s fragment. When
a client needs to read or write a subset of the data, it can get a list of
the stripe objects that contain the data as well as a pair of transforma-
tion rules that need to be applied to transform the requested subset
to each of the stripes. The operations for each of the stripe objects are
executed asynchronously to increase the overall performance. Our
experiments show that ASGARD can improve the I/O performance
by a factor of seven over both collective and non-collective MPI1/O.

2 RELATED WORK

Many projects try to improve the storage system’s performance
for non-contiguous access. The standard POSIX interface only al-
lows reading and writing of contiguous file regions to/from non-
contiguous memory buffers. Research projects like [5, 6] introduce
and evaluate more advanced approaches to PVFS [3]. These include
lists of I/O operations as well as data descriptions similar to the
ones used by MPII/O. In contrast to MPI, ASGARD is more gen-
eral and not tied to a communication library allowing adoption in
general-purpose storage systems.

MPT’s I/O support has many similarities with ASGARD. It allows
users to define memory and file data layouts, and also supports col-
lective I/O operations that improve the performance by coalescing
1/0 operations across multiple MPI ranks before they are sent to the
storage system. MPI /O and ASGARD’s transformations partially
intersect. The collective MPI I/O operations help with some non-
contiguous data access, especially if the overall I/O operations results
in contiguous data access [4, 6, 7]. In the general case, the globally
non-contiguous data access still doesn’t scale well. Additionally MPI
/0 performance gains usually require synchronous progress by all
ranks, this is less likely at exascale.

Unlike MPIT/O, HDF5[10] stores the data definition within the file
together with the data. This allows third-party applications to access
it. HDF5 doesn’t provide a definition for how the data is accessed by
the applications, making it harder for HDF5 and storage systems to
optimize data layout and improve I/O performance. Although HDF-5

Latchesar lonkov, Carlos Maltzahn, and Michael Lang

can use MPI1/O, it usually doesn’t perform well due to the internal
structure of the HDF-5 files [18].

ADIOS [15] isI/O middleware that separates the data format from
the application code by defining it in an XML file that can be mod-
ified depending on the cluster configuration in order to optimize
performance. ADIOS’ data description language is relatively simple,
allowing variables from predefined data types, as well as multidi-
mensional arrays containing values of a base type. Choosing XML as
its data description language makes it extensible and easily parsed
by computers, but difficult for humans. In addition to reading and
writing data to buffers, ADIOS supports more complex aggregate
operations that are useful for analysis and visualization. It supports
different I/O subsystem transports, making it easy to select the best
fit for the data patterns and system configuration.

3 DESIGN

In many cases there is not a single “right” data format that is best for
storing application data. The goal of this work is to allow developers
to easily define the subsets of the data that each process needs, and to
provide support for transforming the existing data into those subsets.
Such functionality allows the storage subsystem to continually opti-
mize the layout of the data. To support this ASGARD needs semantic
knowledge of the application data. ASGARD doesn’t try to be an
end-to-end solution; instead, it provides functionality that can be
integrated into middleware and storage systems. It doesn’t cover
actual data storage or decisions on where and how data should be
replicated in order to optimize I/O performance, but does provide the
semantic information so these decisions can be made intelligently.

In addition to an API for dataset definition, ASGARD provides a
declarative language that allows one to describe an abstract dataset
and its subsets. Using an expressive dataset language makes it easier
for scientific application developers to communicate and share the
data with other applications. In order to ensure familiarity, we chose
syntax similar to the type and data declarations used by languages
such as C and C++.

We distinguish two major entities related to data and the way it
is used and stored. Dataset is an abstract definition that describes
the data types and data objects that are of interest of any application,
regardless of whether it is the producer or consumer of the data. For
scientific applications, datasets are usually big and consist of all data
produced by simulations run on thousands of processors. Fragment
is a subset of the dataset and defines the parts of the data that are of
interest to a particular set of applications, an application, or one of
the application’s ranks.

While designing ASGARD we used the following assumptions:

e Processes create and use a subset of the application data;

o Aprocess’ fragment(s) don’t change often and don’t depend
on dataset values;

e Storage systems can optimize performance by using infor-
mation about the structure of data and the patterns by which
data is accessed;

e The data is likely to be stored far from where it is used.

Although the main goal of ASGARD is to improve I/O performance
for HPC workloads, we tried to make it general enough so it can also
improve other common use cases. This wider applicability can allow
ASGARD to be included in a broader range of storage systems.

Optimized Scatter/Gather Data Operations for Parallel Storage

3.1 DReplLanguage

The DRepl language allows declaration of custom data types based
on a set of primitive types, as well as composite types such as arrays
or structs. Its syntax is loosely based on the syntax for type and
variable definitions in the Go language [8], which is similar to C or
C++. Details of the DRepl language are described earlier work [13].

3.2 Fragment Transformation

Once an abstract dataset and some fragment descriptions are de-
fined, the user can generate transformation rules for converting data
from one fragment to another. Generally, only part of the fragment’s
data will be available in another fragment (i.e., fragments may only
partially overlap), and materializing a fragment may require data
from multiple fragments.

Transformation rules are generated for a pair of fragments: a
source and a destination fragment. They define what data from the
source fragment is needed, and how to convert it to the format of
the destination fragment.

The layout of a fragment is defined as a list of blocks. A block
represents a compact region within the fragment. It has an offset
from the beginning of the fragment, as well as a size. The blocks can
be compound and contain references to other blocks. For example, a
block that describes a two-dimensional matrix, contains a reference
to ablock that defines each element of the matrix. Within a fragment,
each block is either a top-level block that defines the fragment’s
layout, or is referenced by exactly one other block. Additionally, if the
data represented by the block is present in other fragments, the block
contains a reference to the respective source/destination blocks.

Currently ASGARD defines three types of blocks: SBlock, TBlock,
and ABlock. The simplest block, SBlock, defines a contiguous region
that is always read or replicated as a whole entity. All DRepl prim-
itive types are described as SBlocks. SBlocks don’t have references
to other blocks. In some cases an optimizer (see Section 4.1) can
coalesce multiple adjacent SBlocks into a single, bigger SBlock.

A TBlock is a collection of other blocks, generally with different
sizes. It corresponds to a struct composite type in the DRepl lan-
guage. A TBlock contains a list of references to other blocks. Their
offsets are relative to the offset of the TBlock that points to them.
A TBlock can contain holes, or extra padding at the beginning and
the end of it, depending on the values of the sub-blocks’ offsets. The
sub-blocks can’t overlap.

Finally, ABlock defines a multidimensional array of identical
blocks called elements. The definition of an ABlock includes its
dimension, number of elements in each dimension, and element
order. Currently ASGARD supports two element orders: row-major
and column-major, but the design is flexible enough to support the
addition of more types like a Hilbert curve [12] or a Z-order [16].

References to source/destination ABlocks in other fragments re-
quire additional information that specifies relation between the posi-
tions of elements in the block with elements of the source/destination

block. For each dimension i, there are five integer values (a;,b;,c;,d;,idx;).

The element with index (x1,x3,...,x,) in the original ABlock corre-
sponds to an element (y1,Y2,...y5) in the source/destination ABlock,
where

a,-xi+bi
Yidx; cl—xi+di

PDSW-DISCS’17, November 12-17, 2017, Denver, CO, USA

frag1
SBlock

=y

ABlock [5000, 6000]

src
-
Dataset \ dest1_| [i-500, j-300] \/src

ABlock [80000, 80000] SBlock

/ doso |l 1] / ‘\src
—
frag0 / dest0 \/

ABlock [1000, 1000] SBlock

(L] %]

Figure 1: Example of a conversion map of two fragments

If the value of the expression is not a whole number, the element
doesn’t have a corresponding element in the source/destination
block. Once the y; values are calculated, the offset of the element is
calculated using the element order for the source/destination ABlock.

In complex datasets, the elements of an ABlock can be TBlocks,
which can in turn contain fields that are ABlocks, with TBlock el-
ements, and so forth. Two fragments of the dataset can contain
different subsets of elements and fields for each of the blocks, and AS-
GARD will recursively apply the correct transformations to convert
one fragment to the other.

Figure 1 shows the internal representation defined for the abstract
dataset, as well as the two fragments frag® and frag?.

dataset {

var data[80000, 80000] float64
}

fragment frago {

var ds[i:1000, j:1000] = datali, j]
%ragment fragl {

var a [1:5000, j:6000] = data[i+500, j+300]

}

The dataset has two blocks defined — an ABlock with 2 dimen-
sions [80000,80000]. Each element of the ABlock is a SBlock. Frag-
ment fragl contains an ABlock with 2 dimensions [5000,6000]. The
ABlock is connected to corresponding ABlock in the dataset, where
element [i,j] from it corresponds to element [i+500,j+300] in the
dataset ABlock. Similarly, frag@ defines a smaller ABlock with 2
dimensions: [1000,1000] and its element [i,j] corresponds to the el-
ement with the same address in the dataset ABlock.

In distributed environments, where communication is expensive,
itis beneficial to split the transformation rules into two parts. The re-
mote transformation rules extract the necessary data from the source
fragment and convert it into a compact intermediate buffer that
can be efficiently transmitted over the network to where the data
is needed. The local transformation rules use the data from the in-
termediate buffer and place it in the right format in the destination
fragment.

The blocks in the fragments have the appropriate dataset blocks
as sources, and accordingly the dataset blocks have the fragments’

PDSW-DISCS’17, November 12-17, 2017, Denver, CO, USA

Remote Transformations

Intermediate frag1
ABlock [1000, 1000] ABlock [5000, 6000]
SIc
[i+500, j+300]
SBlock > SBlock
src
Local Transformations
Intermediate frag0
ABlock [1000, 1000] ABlock [1000, 1000]
-
-
SBlock > SBlock
dest0

Figure 2: Example of local and remote transformation rules

blocks as destinations. Figure 2 shows the remote and local transfor-
mations for materializing fragment frag@ from fragment frag1.

4 IMPLEMENTATION

The ASGARD implementation consists of two main modules: the
DRepl language parser, and the transformation engine. The parser
is optional, and can be used by applications for easier description
of datasets and fragments. For supporting ASGARD’s functionality,
storage systems only need to include the transformation engine.

The transformation engine uses the transformation rules pro-
duced by the parser to convert data from a region in memory con-
taining source fragment’s data to a region that represents a target
fragment that is being materialized.

The transformation library is compact (less than three thousand
lines of C code) and can be easily incorporated in most storage
systems. It provides support for serializing and deserializing trans-
formation rules for easy transmission over the network.

Transformation rules are applied by iteratively transforming each
top-level block from the source fragment to the blocks it references.
For complex blocks, like TBlock and ABlock, the transformation is
performed recursively for each field/element block they contain.

4.1 Optimizer

Asthe transformation rules can be complex, ASGARD’s performance
in the general case can be sub-optimal. There are many common
cases when the transformation rules can be optimized further. We
implemented some optimizations that cover the most frequently
used patterns.

If sequential SBlock fields within a TBlock are copied to sequential
fields in a destination TBlock, they can be replaced by a single SBlock
with their combined size. If all fields from a TBlock are copied, the
whole TBlock is replaced with an SBlock.

ABlock optimizations are currently performed only if both source
and destination blocks are of the same element type. They include
replacing a dimension of the ABlock with a TBlock if the required
elements for the dimension are sequential. For example, if the trans-
formation rules of a 3D floating-point matrix with size (100,100,100)

Latchesar lonkov, Carlos Maltzahn, and Michael Lang

copy the hyper-slab (10...50,10...50,10...50), the original ABlock is
replaced by a 2D matrix with size (100,100) containing TBlocks with
three fields: ahole of size float[10],a SBlock of size float[4@],and
another hole of size float[50]. Thus applying the transformation
rules will be executed for ten thousand (slightly more complicated)
elements, instead of one million. As with TBlocks, if all elements
from an ABlock are copied, the optimizer replaces it with a SBlock
with the same size.

4.2 Ceph Integration

We modified the Ceph distributed storage system to use ASGARD.
The modifications are primarily in Ceph’s object store device (OSD)
layer, RADOS. We utilized Ceph’s support for custom data objects
in RADOS by creating a new class that defines an ASGARD dataset.
For creation of a ASGARD object, the user provides a description of
the abstract dataset as well as a list of fragment descriptions for how
the dataset is to be partitioned into RADOS objects. The fragments
are similar to the standard file striping supported by most paral-
lel file systems. Using ASGARD data descriptions provides much
greater flexibility on how the data is partitioned into OSD objects.
The dataset object doesn’t contain any of the actual data; rather, it
only contains the DRepl dataset definition as well as the names and
ASGARD definitions of the stripe fragments that contain the data. In
order to access data from Ceph’s ASGARD objects, the user needs to
define a fragment and query the Ceph ASGARD class, which stripe
fragments contain the requested data. The result of the query is a list
of stripe fragments and transformation rules on how to convert their
data to the requested subset. The operation is done once during the
initialization stage of the application. Reading and writing data goes
directly to the RADOS objects that represent the stripe fragments.

The second part of the Ceph modification is introducing two new
operations on RADOS objects. The original RADOS supports access-
ing sequential regions of an object defined by offset and length. We
added two operations dread and dwrite, that use ASGARD transfor-
mation rules to define what data from the object is required and how
to convert it to a compact buffer that is passed to/from the client. The
transformations are applied on the OSD instances that contain the
data, decreasing the number of operations over the network, increas-
ing the overall throughput and decreasing the I/O latency. The client
has an opportunity to execute multiple operations asynchronously,
potentially to multiple OSD instances, and therefore utilize the full
potential of the Ceph RADOS cluster.

Figure 3: MPI Tile I/O performance

Optimized Scatter/Gather Data Operations for Parallel Storage

5 RESULTS

In order to evaluate ASGARD’s performance, we set up a small Ceph
cluster with 4 OSD servers and 1 metadata server, running on 4 nodes.
The nodes have an eight-core Intel Xeon processor and 128GB of
RAM. We used Ceph’s default settings. Each object store instance
was using a single rotational SATA disk with a capacity of 4 TB. There
were 8 additional nodes that we used during the tests. Allnodes were
connected with an Infiniband EDR interconnect. We used OpenMPI
as our MPI library.

The goal of our experiments is to demonstrate the benefits of
offloading complex data transformations to the storage system. We
compared ASGARD to MPI1/O, as both provide similar functionality
and are relatively easy to use. The first test we ran was the MPI Tile
I/0 benchmark from the Parallel I/O Benchmarking Consortium [2].
We modified the code and added support for Ceph ASGARD objects.
We ran the code on total 12 nodes, including the 4 that run Ceph.
Tile I/O partitions a 2D array of data into multiple MPI ranks. Each
rank is responsible for reading or writing a tile of the whole array.
We varied the size of the tiles from 512x512 to 4096x4096 elements
while running 8 ranks per node (96 total ranks). In order to evaluate
the bottlenecks of the setup, we also ran the tests with the same tile
size (4096x4096), but varying the number of ranks per node, from
1 to 8 (total 96 ranks).

Figure 3 shows the read and write performance while varying the
tiles and ranks. ASGARD outperforms both read and write for the
non-collective and collective MPI1/O operations. We used Ceph’s
monitoring infrastructure to inspect the number of operations and
read/write bandwidth going to the OSD instances. ASGARD’s imple-
mentation used the fewest number of operations per second. While
both ASGARD and collective MPI1/O had similarly high data size per
operation, non-collective MPII/O used a high number of operations
with much lower data size per operation. During write operations,
in addition to writing data to the OSDs, non-collective MPIT/O tests
were also reading a lot of data.

We also evaluated I/O performance using the HPIO benchmark [1].
It is highly customizable and allows I/O workloads that support con-
tiguous/noncontiguous data layout both in memory and in files. For
these tests we run the benchmark only on the 8 nodes that were not
running Ceph, with 8 ranks per node (total 64).

For the first evaluation we tried to mimic a use case where the
dataset consists of a one-dimensional array of structs, containing
three 64-bit values. The application is only concerned with one of

Figure 4: HPIO read performance

PDSW-DISCS’17, November 12-17, 2017, Denver, CO, USA

Figure 5: HPIO write performance

these values. When the memory or the file layouts are contiguous (C),
only the value of interest is stored. When they are non-contiguous
(N), all data is stored, but only the value of interest is accessed. Fig-
ure 4 shows the results for reading, while varying the size of the array.
For contiguous reads from storage, non-collective MPI I/O access
performs well, as Ceph file system is well-optimized for reading the
contiguous file layout and most of the data is prefetched to the local
cache. ASGARD’s performance is comparable, but can probably be
improved with further optimization. When data is read from the file
in non-contiguous patterns, both collective and non-collective MPI
1/0O degrade significantly, by a factor of 100 for the non-collective
case. ASGARD clearly outperforms both MPII/O modes and is up
to ten times better than collective MPI1/O. Figure 5 shows similar
results for write performance. ASGARD performs noticeably worse
for very small writes, because the overhead for sending the trans-
formation rules, as well as encoding and decoding them, becomes
the main bottleneck. For non-contiguous file patterns, ASGARD
performs up to five times better than collective MPII/O.

6 CONCLUSIONS

ASGARD provides a simple language for describing complex scien-
tific datasets and subsets. It creates a compact representation of the
transformations required for data conversion between fragments.
ASGARD is designed for distributed systems and intelligent storage
elements. It optimizes the size of the data sent over the network by
offloading some of the conversion to the storage system. The results
demonstrate that complex scatter/gather transformation rules allow
superior performance without synchronous progress mandated by
collective MPI1/O.

The availability of rich semantic information about the dataset
as well as the separation between the fragments’ declarations and
the data conversions provide many opportunities for performance
optimizations. Results showed that ASGARD reduced the number
of operations going to the the OSD per data transferred.

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, through the Storage Systems and Input/Output
(SSIO) for Extreme Scale Science Program under Award Number
ERKJ312, Program Manager Lucy Nowell. This paper has assigned
LANL publication number: LA-UR-17-21363.

PDSW-DISCS’17, November 12-17, 2017, Denver, CO, USA

REFERENCES

(1]
(2]
(3]

(4]

HPIO Benchmark.
webpage/hpio.html
Parallel I/O Benchmarking Consortium. MPI Tile I/O Benchmark.
http://www.mcs.anl.gov/research/projects/pio-benchmark

Philip H Carns, Walter B Ligon III, Robert B Ross, and Rajeev Thakur. 2000. PVFS:
a parallel file system for linux clusters. In Proceedings of the 4th annual Linux
Showcase & Conference-Volume 4. USENIX Association, 28-28.

Avery Ching, Alok Choudhary, Kenin Coloma, Wei-keng Liao, Robert Ross,
and William Gropp. 2003. Noncontiguous i/o accesses through mpi-io. In
Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM
International Symposium on. IEEE, 104-111.

Avery Ching, Alok Choudhary, Wei-keng Liao, Rob Ross, and William Gropp.
2002. Noncontiguous i/o through pvfs. In Cluster Computing, 2002. Proceedings.
2002 IEEE International Conference on. IEEE, 405-414.

Avery Ching, Alok Choudhary, Wei-keng Liao, Lee Ward, and Neil Pundit. 2006.
Evaluating I/O characteristics and methods for storing structured scientific
data. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International. IEEE, 10-pp.

Kenin Coloma, Avery Ching, Alok Choudhary, Wei-keng Liao, Rob Ross, Rajeev
Thakur, and Lee Ward. 2006. A new flexible MPI collective I/O implementation.
In Cluster Computing, 2006 IEEE International Conference on. IEEE, 1-10.

Alan A.A.Donovan and Brian W. Kernighan. 2015. The Go Programming Language
(1st ed.). Addison-Wesley Professional.

Gary Grider. 2011. Exa-Scale FSIO Can we get there? Can we afford to?. In 7th
IEEE International Workshop on Storage Network Architecture and Parallel I/Os.

http://users.eecs.northwestern.edu/~aching/research_

[10

[16]

(17]

Latchesar lonkov, Carlos Maltzahn, and Michael Lang

The HDF Group. Hierarchical data format version 5. http://www.hdfgroup.org/
HDF5

Jun He, John Bent, Aaron Torres, Gary Grider, Garth Gibson, Carlos Maltzahn,
and Xian-He Sun. 2013. I/O acceleration with pattern detection. In Proceedings
of the 22nd international symposium on High-Performance Parallel and Distributed
Computing. ACM, 25-36.

David Hilbert. 1891. On the continuous mapping of a line on a surface part.
Mathematical Annals 38, 3 (1891), 459-460.

Latchesar Ionkov, Michael Lang, and Carlos Maltzahn. 2013. Drepl: optimizing
access to application data for analysis and visualization. In 2013 IEEE 29th
Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 1-11.
N.Liu,J. Cope,P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn.
2012. On the role of burst buffers in leadership-class storage systems. In Mass
Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium on.IEEE, 1-11.
Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin.
2008. Flexible IO and Integration for Scientific Codes Through the Adaptable IO
System (ADIOS). In Proceedings of the 6th International Workshop on Challenges
of Large Applications in Distributed Environments (CLADE ‘08). ACM, New York,
NY, USA, 15-24. DOI:https://doi.org/10.1145/1383529.1383533

Guy M Morton. 1966. A computer oriented geodetic data base and a new technique
in file sequencing. International Business Machines Company New York.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
2006. Ceph: A scalable, high-performance distributed file system. In Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association, 307-320.

Weikuan Yu, Jeffrey S Vetter, and H Sarp Oral. 2008. Performance characterization
and optimization of parallel I/O on the Cray XT. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on. IEEE, 1-11.

http://users.eecs.northwestern.edu/~aching/research_webpage/hpio.html
http://users.eecs.northwestern.edu/~aching/research_webpage/hpio.html
http://www.mcs.anl.gov/research/projects/pio-benchmark
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
https://doi.org/10.1145/1383529.1383533

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 DRepl Language
	3.2 Fragment Transformation

	4 Implementation
	4.1 Optimizer
	4.2 Ceph Integration

	5 Results
	6 Conclusions
	References

