
Optimized Scatter/Gather Data Operations for Parallel Storage
Latchesar Ionkov

Los Alamos National Laboratory
Los Alamos, NM 87545

lionkov@lanl.gov

Carlos Maltzahn
University of California
Santa Cruz, CA 95064
carlosm@cs.ucsc.edu

Michael Lang
Los Alamos National Laboratory

Los Alamos, NM 87545
mlang@lanl.gov

ABSTRACT
Scientific workflows contain an increasing number of interacting
applications, often with big disparity between the formats of data
being produced and consumed by different applications. This mis-
match can result in performance degradation as data retrieval causes
multiple read operations (often to a remote storage system) in order
to convert the data. Although some parallel filesystems and middle-
ware libraries attempt to identify access patterns and optimize data
retrieval, they frequently fail if the patterns are complex.

The goal of ASGARD is to replace I/O operations issued to a file by
the processes with a single operation that passes enough semantic
information to the storage system, so it can combine (and even-
tually optimize) the data movement. ASGARD allows application
developers to define their application’s abstract dataset as well as
the subsets of the data (fragments) that are created and used by the
HPC codes. It uses the semantic information to generate and execute
transformation rules that convert the data between the the memory
layouts of the producer and consumer applications, aswell as the lay-
out on nonvolatile storage. The transformation engine implements
functionality similar to the scatter/gather support available in some
file systems. Since data subsets are defined during the initialization
phase, i.e., well in advance from the time they are used to store and
retrieve data, the storage system has multiple opportunities to op-
timize both the data layout and the transformation rules in order to
increase the overall I/O performance.

Inorder toevaluateASGARD’sperformance,weaddedsupport for
ASGARD’s transformation rules to Ceph’s object store RADOS. We
created Ceph data objects that allow custom data striping based on
ASGARD’s fragmentdefinitions.Our testswith theextendedRADOS
show up to 5 times performance improvements for writes and 10
times performance improvements for reads over collective MPI I/O.
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1 INTRODUCTION
Advances in computer hardware have led to major increases of the
size of numerical simulations run on supercomputers. Future exas-
cale systemswill need hundreds of petabytes of storage to satisfy the
requirements for scratch space [9]. In order to perform at that scale,
future supercomputers will likely employ complex hierarchies of
both volatile and nonvolatile memories. Architectures such as burst
buffers [14] deliver performance at the cost of complexity.

In the past, most data analysis and visualization was a post-
processing step. Due to the scale as, well as the higher cost for data
movement, in situ and in-transit data processing are more attractive.
In many cases, the visualization and analysis applications need only
a small subset of the data produced by the application, but since data
layout is optimized to increase the simulation’s performance, read-
ing the required subset of the data may reduce overall performance
of the storage system.

HPC applications store datasets in a single file (N-to-1), one file
per process (N-to-N), or a fewfiles (N-to-M). Inmany cases, as data is
saved infiles, the semanticmetadatadoesn’t reach thestoragesystem.
Many storage systems try to find temporal patterns in the operations
so they can predict the future operations and improve I/O perfor-
mance, but with little knowledge of the overall structure of the data
and the application’s requirements, these predictions often fail [11].

ASGARD allows developers to define an abstract description of
the data produced by the application. They can also provide defini-
tions of the subsets (fragments) of the data used by each process, as
well as by other visualization and analysis applications. ASGARD
uses a data declaration language that has syntax familiar to most
software developers. In addition to a predefined set of primary types,
it supports multi-dimensional arrays as well as collections of related
fields (i.e., records or structs). The fragments of the dataset are made
up of subsets of arrays, records, or combinations of both.

Once the dataset and its fragments are declared, ASGARD pro-
vides functionality to query how to convert the content of one frag-
ment to another. ASGARD defines transformation rules, which de-
scribe the conversion between two fragments. The values required
for fragment materialization might not be located in a single frag-
ment, so ASGARD allows the user to get a list of the fragments
required to produce a specific fragment.

ASGARD is based onDRepl [13],which is designed to separate the
application’s view of the data from the storage layout and support
divergent data replication. ASGARD uses the same dataset language
and parser. It extends DRepl by providing support for dynamic frag-
ment definitions, and functionality for transforming and gathering
data frommultiple data fragments. While DRepl provides a POSIX
API for accessing the data as files, ASGARD avoids the file interface
and focuses on the data layout in application memory and how to
transform it optimally to the layout on persistent storage.
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In order to decrease network usage, ASGARD splits the trans-
formation rules into two parts. Remote rules are executed on the
server where the source fragment is located and produce a compact
representation of the data for the destination fragment. Once the
compact representation is received, ASGARD applies local rules to
copy the parts of the source fragment to the appropriate locations in
the destination fragment.ASGARD, in a sense, provides an extension
to the standard scatter/gather operations. The transformation rules
allow compact definition of complex patterns. The combination of
gather (on the side where the data is stored) and scatter (on the side
where data is used) provides a powerful tool for transforming data
from the format in which it is produced to a format suited for con-
sumption. The fact that the fragments are defined in advance allows
an active storage subsystem to perform optimizations that might be
too slow or costly if run at the time the operations are executed.

In order to evaluate ASGARD’s benefits, we modified Ceph’s [17]
RADOS object store system to support ASGARD’s transformation
rules for storing and retrieving data to objects. We also created a
customobject class that allowsdevelopers todefineanobject that rep-
resents an ASGARD dataset and how it is partitioned into stripes on
storage. Each of the stripes is defined as ASGARD’s fragment.When
a client needs to read or write a subset of the data, it can get a list of
the stripe objects that contain the data aswell as a pair of transforma-
tion rules that need to be applied to transform the requested subset
to each of the stripes. The operations for each of the stripe objects are
executed asynchronously to increase the overall performance. Our
experiments show that ASGARD can improve the I/O performance
by a factor of seven over both collective and non-collective MPI I/O.

2 RELATEDWORK
Many projects try to improve the storage system’s performance
for non-contiguous access. The standard POSIX interface only al-
lows reading and writing of contiguous file regions to/from non-
contiguous memory buffers. Research projects like [5, 6] introduce
and evaluate more advanced approaches to PVFS [3]. These include
lists of I/O operations as well as data descriptions similar to the
ones used by MPI I/O. In contrast to MPI, ASGARD is more gen-
eral and not tied to a communication library allowing adoption in
general-purpose storage systems.

MPI’s I/O support has many similarities with ASGARD. It allows
users to define memory and file data layouts, and also supports col-
lective I/O operations that improve the performance by coalescing
I/O operations across multiple MPI ranks before they are sent to the
storage system. MPI I/O and ASGARD’s transformations partially
intersect. The collective MPI I/O operations help with some non-
contiguousdata access, especially if the overall I/Ooperations results
in contiguous data access [4, 6, 7]. In the general case, the globally
non-contiguous data access still doesn’t scale well. AdditionallyMPI
I/O performance gains usually require synchronous progress by all
ranks, this is less likely at exascale.

UnlikeMPI I/O,HDF5[10] stores the data definitionwithin the file
togetherwith the data. This allows third-party applications to access
it. HDF5 doesn’t provide a definition for how the data is accessed by
the applications, making it harder for HDF5 and storage systems to
optimize data layout and improve I/O performance. AlthoughHDF-5

can use MPI I/O, it usually doesn’t performwell due to the internal
structure of the HDF-5 files [18].

ADIOS [15] is I/Omiddleware that separates the data format from
the application code by defining it in an XML file that can be mod-
ified depending on the cluster configuration in order to optimize
performance. ADIOS’ data description language is relatively simple,
allowing variables from predefined data types, as well as multidi-
mensional arrays containing values of a base type. Choosing XML as
its data description language makes it extensible and easily parsed
by computers, but difficult for humans. In addition to reading and
writing data to buffers, ADIOS supports more complex aggregate
operations that are useful for analysis and visualization. It supports
different I/O subsystem transports, making it easy to select the best
fit for the data patterns and system configuration.

3 DESIGN
In many cases there is not a single “right” data format that is best for
storing application data. The goal of this work is to allow developers
to easily define the subsets of the data that each process needs, and to
provide support for transforming the existing data into those subsets.
Such functionality allows the storage subsystem to continually opti-
mize the layout of the data. To support this ASGARDneeds semantic
knowledge of the application data. ASGARD doesn’t try to be an
end-to-end solution; instead, it provides functionality that can be
integrated into middleware and storage systems. It doesn’t cover
actual data storage or decisions on where and how data should be
replicated in order to optimize I/O performance, but does provide the
semantic information so these decisions can be made intelligently.

In addition to an API for dataset definition, ASGARD provides a
declarative language that allows one to describe an abstract dataset
and its subsets. Using an expressive dataset language makes it easier
for scientific application developers to communicate and share the
data with other applications. In order to ensure familiarity, we chose
syntax similar to the type and data declarations used by languages
such as C and C++.

We distinguish twomajor entities related to data and the way it
is used and stored. Dataset is an abstract definition that describes
the data types and data objects that are of interest of any application,
regardless of whether it is the producer or consumer of the data. For
scientific applications, datasets are usually big and consist of all data
produced by simulations run on thousands of processors. Fragment
is a subset of the dataset and defines the parts of the data that are of
interest to a particular set of applications, an application, or one of
the application’s ranks.

While designing ASGARDwe used the following assumptions:
• Processes create and use a subset of the application data;
• Aprocess’ fragment(s) don’t change often and don’t depend

on dataset values;
• Storage systems can optimize performance by using infor-

mation about the structure of data and thepatterns bywhich
data is accessed;

• The data is likely to be stored far fromwhere it is used.
AlthoughthemaingoalofASGARDis to improve I/Operformance

for HPCworkloads, we tried to make it general enough so it can also
improve other common use cases. This wider applicability can allow
ASGARD to be included in a broader range of storage systems.
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3.1 DRepl Language
The DRepl language allows declaration of custom data types based
on a set of primitive types, as well as composite types such as arrays
or structs. Its syntax is loosely based on the syntax for type and
variable definitions in the Go language [8], which is similar to C or
C++. Details of the DRepl language are described earlier work [13].

3.2 Fragment Transformation
Once an abstract dataset and some fragment descriptions are de-
fined, the user can generate transformation rules for converting data
from one fragment to another. Generally, only part of the fragment’s
data will be available in another fragment (i.e., fragments may only
partially overlap), and materializing a fragment may require data
frommultiple fragments.

Transformation rules are generated for a pair of fragments: a
source and a destination fragment. They define what data from the
source fragment is needed, and how to convert it to the format of
the destination fragment.

The layout of a fragment is defined as a list of blocks. A block
represents a compact region within the fragment. It has an offset
from the beginning of the fragment, as well as a size. The blocks can
be compound and contain references to other blocks. For example, a
block that describes a two-dimensional matrix, contains a reference
to a block that defines each element of thematrix.Within a fragment,
each block is either a top-level block that defines the fragment’s
layout, or is referencedbyexactly oneother block.Additionally, if the
data represented by the block is present in other fragments, the block
contains a reference to the respective source/destination blocks.

Currently ASGARD defines three types of blocks: SBlock, TBlock,
and ABlock. The simplest block, SBlock, defines a contiguous region
that is always read or replicated as a whole entity. All DRepl prim-
itive types are described as SBlocks. SBlocks don’t have references
to other blocks. In some cases an optimizer (see Section 4.1) can
coalesce multiple adjacent SBlocks into a single, bigger SBlock.

A TBlock is a collection of other blocks, generally with different
sizes. It corresponds to a struct composite type in the DRepl lan-
guage. A TBlock contains a list of references to other blocks. Their
offsets are relative to the offset of the TBlock that points to them.
A TBlock can contain holes, or extra padding at the beginning and
the end of it, depending on the values of the sub-blocks’ offsets. The
sub-blocks can’t overlap.

Finally, ABlock defines a multidimensional array of identical
blocks called elements. The definition of an ABlock includes its
dimension, number of elements in each dimension, and element
order. Currently ASGARD supports two element orders: row-major
and column-major, but the design is flexible enough to support the
addition of more types like a Hilbert curve [12] or a Z-order [16].

References to source/destination ABlocks in other fragments re-
quire additional information that specifies relation between the posi-
tionsof elements in theblockwith elementsof the source/destination
block.Foreachdimensioni , therearefive integervalues (ai ,bi ,ci ,di ,idxi ).
The element with index (x1,x2,...,xn ) in the original ABlock corre-
sponds to an element (y1,y2,...yn ) in the source/destination ABlock,
where

yidxi =
aixi+bi
cixi+di

frag0

ABlock [1000, 1000][i, j] SBlock

Dataset

SBlockABlock [80000, 80000]

[i, j]

[i-500, j-300]

frag1
SBlockABlock [5000, 6000]

[i+500, j+300]

src elem

src

dest0

dest1

dest0

element

src

src
elem

dest1

Figure 1: Example of a conversionmap of two fragments

If the value of the expression is not a whole number, the element
doesn’t have a corresponding element in the source/destination
block. Once theyj values are calculated, the offset of the element is
calculatedusing the element order for the source/destinationABlock.

In complex datasets, the elements of an ABlock can be TBlocks,
which can in turn contain fields that are ABlocks, with TBlock el-
ements, and so forth. Two fragments of the dataset can contain
different subsets of elements and fields for each of the blocks, andAS-
GARDwill recursively apply the correct transformations to convert
one fragment to the other.

Figure 1 shows the internal representation defined for the abstract
dataset, as well as the two fragments frag0 and frag1.

dataset {
var data[80000, 80000] float64

}
fragment frag0 {

var ds[i:1000, j:1000] = data[i, j]
}
fragment frag1 {

var a [i:5000, j:6000] = data[i+500, j+300]
}

The dataset has two blocks defined – an ABlock with 2 dimen-
sions [80000,80000]. Each element of the ABlock is a SBlock. Frag-
ment frag1 contains an ABlock with 2 dimensions [5000,6000]. The
ABlock is connected to corresponding ABlock in the dataset, where
element [i,j] from it corresponds to element [i+500,j+300] in the
dataset ABlock. Similarly, frag0 defines a smaller ABlock with 2
dimensions: [1000,1000] and its element [i,j] corresponds to the el-
ement with the same address in the dataset ABlock.

In distributed environments, where communication is expensive,
it is beneficial to split the transformation rules into two parts. The re-
mote transformation rules extract the necessary data from the source
fragment and convert it into a compact intermediate buffer that
can be efficiently transmitted over the network to where the data
is needed. The local transformation rules use the data from the in-
termediate buffer and place it in the right format in the destination
fragment.

The blocks in the fragments have the appropriate dataset blocks
as sources, and accordingly the dataset blocks have the fragments’
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Remote Transformations
Intermediate

ABlock [1000, 1000]

[i+500, j+300]
SBlock

frag1

SBlock

ABlock [5000, 6000]

elemelem

src

Intermediate frag0

ABlock [1000, 1000]

[i, j]
SBlock SBlock

ABlock [1000, 1000]

elem

dest0

elem

Local Transformations

src

dest0

Figure 2: Example of local and remote transformation rules

blocks as destinations. Figure 2 shows the remote and local transfor-
mations for materializing fragment frag0 from fragment frag1.

4 IMPLEMENTATION
The ASGARD implementation consists of two main modules: the
DRepl language parser, and the transformation engine. The parser
is optional, and can be used by applications for easier description
of datasets and fragments. For supporting ASGARD’s functionality,
storage systems only need to include the transformation engine.

The transformation engine uses the transformation rules pro-
duced by the parser to convert data from a region in memory con-
taining source fragment’s data to a region that represents a target
fragment that is being materialized.

The transformation library is compact (less than three thousand
lines of C code) and can be easily incorporated in most storage
systems. It provides support for serializing and deserializing trans-
formation rules for easy transmission over the network.

Transformation rules are applied by iteratively transforming each
top-level block from the source fragment to the blocks it references.
For complex blocks, like TBlock and ABlock, the transformation is
performed recursively for each field/element block they contain.

4.1 Optimizer
As the transformation rules canbe complex,ASGARD’sperformance
in the general case can be sub-optimal. There are many common
cases when the transformation rules can be optimized further. We
implemented some optimizations that cover the most frequently
used patterns.

If sequential SBlockfieldswithin aTBlock are copied to sequential
fields in a destination TBlock, they can be replaced by a single SBlock
with their combined size. If all fields from a TBlock are copied, the
whole TBlock is replaced with an SBlock.

ABlock optimizations are currently performed only if both source
and destination blocks are of the same element type. They include
replacing a dimension of the ABlock with a TBlock if the required
elements for the dimension are sequential. For example, if the trans-
formation rules of a 3D floating-point matrix with size (100,100,100)

copy the hyper-slab (10...50,10...50,10...50), the original ABlock is
replaced by a 2Dmatrix with size (100,100) containing TBlocks with
threefields: aholeof sizefloat[10], a SBlockof sizefloat[40], and
another hole of size float[50]. Thus applying the transformation
rules will be executed for ten thousand (slightly more complicated)
elements, instead of one million. As with TBlocks, if all elements
from an ABlock are copied, the optimizer replaces it with a SBlock
with the same size.

4.2 Ceph Integration
Wemodified the Ceph distributed storage system to use ASGARD.
The modifications are primarily in Ceph’s object store device (OSD)
layer, RADOS.We utilized Ceph’s support for custom data objects
in RADOS by creating a new class that defines an ASGARD dataset.
For creation of a ASGARD object, the user provides a description of
the abstract dataset as well as a list of fragment descriptions for how
the dataset is to be partitioned into RADOS objects. The fragments
are similar to the standard file striping supported by most paral-
lel file systems. Using ASGARD data descriptions provides much
greater flexibility on how the data is partitioned into OSD objects.
The dataset object doesn’t contain any of the actual data; rather, it
only contains the DRepl dataset definition as well as the names and
ASGARD definitions of the stripe fragments that contain the data. In
order to access data from Ceph’s ASGARD objects, the user needs to
define a fragment and query the Ceph ASGARD class, which stripe
fragments contain the requested data. The result of the query is a list
of stripe fragments and transformation rules on how to convert their
data to the requested subset. The operation is done once during the
initialization stage of the application. Reading and writing data goes
directly to the RADOS objects that represent the stripe fragments.

The second part of the Ceph modification is introducing two new
operations on RADOS objects. The original RADOS supports access-
ing sequential regions of an object defined by offset and length. We
added two operations dread and dwrite, that use ASGARD transfor-
mation rules to define what data from the object is required and how
to convert it to a compact buffer that is passed to/from the client. The
transformations are applied on the OSD instances that contain the
data, decreasing the number of operations over the network, increas-
ing the overall throughput and decreasing the I/O latency. The client
has an opportunity to execute multiple operations asynchronously,
potentially to multiple OSD instances, and therefore utilize the full
potential of the Ceph RADOS cluster.
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Figure 3: MPI Tile I/O performance
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5 RESULTS
In order to evaluate ASGARD’s performance, we set up a small Ceph
clusterwith 4OSDservers and 1metadata server, runningon 4nodes.
The nodes have an eight-core Intel Xeon processor and 128GB of
RAM.We used Ceph’s default settings. Each object store instance
wasusing a single rotational SATAdiskwith a capacity of 4TB.There
were 8 additional nodes thatwe used during the tests. All nodeswere
connected with an Infiniband EDR interconnect. We used OpenMPI
as our MPI library.

The goal of our experiments is to demonstrate the benefits of
offloading complex data transformations to the storage system.We
compared ASGARD toMPI I/O, as both provide similar functionality
and are relatively easy to use. The first test we ran was the MPI Tile
I/O benchmark from the Parallel I/O Benchmarking Consortium [2].
We modified the code and added support for Ceph ASGARD objects.
We ran the code on total 12 nodes, including the 4 that run Ceph.
Tile I/O partitions a 2D array of data into multiple MPI ranks. Each
rank is responsible for reading or writing a tile of the whole array.
We varied the size of the tiles from 512x512 to 4096x4096 elements
while running 8 ranks per node (96 total ranks). In order to evaluate
the bottlenecks of the setup, we also ran the tests with the same tile
size (4096x4096), but varying the number of ranks per node, from
1 to 8 (total 96 ranks).

Figure 3 shows the read and write performance while varying the
tiles and ranks. ASGARD outperforms both read and write for the
non-collective and collective MPI I/O operations. We used Ceph’s
monitoring infrastructure to inspect the number of operations and
read/write bandwidth going to the OSD instances. ASGARD’s imple-
mentation used the fewest number of operations per second. While
bothASGARDand collectiveMPI I/Ohad similarly high data size per
operation, non-collective MPI I/O used a high number of operations
with much lower data size per operation. During write operations,
in addition to writing data to the OSDs, non-collective MPI I/O tests
were also reading a lot of data.

Wealsoevaluated I/Operformanceusing theHPIObenchmark [1].
It is highly customizable and allows I/O workloads that support con-
tiguous/noncontiguous data layout both in memory and in files. For
these tests we run the benchmark only on the 8 nodes that were not
running Ceph, with 8 ranks per node (total 64).

For the first evaluation we tried to mimic a use case where the
dataset consists of a one-dimensional array of structs, containing
three 64-bit values. The application is only concerned with one of
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Figure 4: HPIO read performance
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Figure 5: HPIOwrite performance

these values.When thememoryor thefile layouts are contiguous (C),
only the value of interest is stored. When they are non-contiguous
(N), all data is stored, but only the value of interest is accessed. Fig-
ure 4 shows the results for reading,while varying the size of the array.
For contiguous reads from storage, non-collective MPI I/O access
performs well, as Ceph file system is well-optimized for reading the
contiguous file layout and most of the data is prefetched to the local
cache. ASGARD’s performance is comparable, but can probably be
improved with further optimization. When data is read from the file
in non-contiguous patterns, both collective and non-collective MPI
I/O degrade significantly, by a factor of 100 for the non-collective
case. ASGARD clearly outperforms bothMPI I/Omodes and is up
to ten times better than collective MPI I/O. Figure 5 shows similar
results for write performance. ASGARD performs noticeably worse
for very small writes, because the overhead for sending the trans-
formation rules, as well as encoding and decoding them, becomes
the main bottleneck. For non-contiguous file patterns, ASGARD
performs up to five times better than collective MPI I/O.

6 CONCLUSIONS
ASGARD provides a simple language for describing complex scien-
tific datasets and subsets. It creates a compact representation of the
transformations required for data conversion between fragments.
ASGARD is designed for distributed systems and intelligent storage
elements. It optimizes the size of the data sent over the network by
offloading some of the conversion to the storage system. The results
demonstrate that complex scatter/gather transformation rules allow
superior performance without synchronous progress mandated by
collective MPI I/O.

The availability of rich semantic information about the dataset
as well as the separation between the fragments’ declarations and
the data conversions provide many opportunities for performance
optimizations. Results showed that ASGARD reduced the number
of operations going to the the OSD per data transferred.

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, through the Storage Systems and Input/Output
(SSIO) for Extreme Scale Science Program under Award Number
ERKJ312, ProgramManager Lucy Nowell. This paper has assigned
LANL publication number: LA-UR-17-21363.
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