

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Optimized Scatter/Gather for
Parallel Storage

Latchesar Ionkov
Carlos Maltzahn

Michael Lang

PDSW-DISCS 2017

LA-UR-17-2163

Los Alamos National Laboratory

HPC Storage: Stuck in the Past

3

Los Alamos National Laboratory

Replacing POSIX is hard

• Great interface
• Easy to understand and use
• Easy to implement almost correctly
• Not scalable for shared use
• A lot of unsettled corner cases
• Made for programmers

• Scientists don’t care about files
• they have datasets
• they have other things to worry about
• best case — know how data is laid out in memory

4

Los Alamos National Laboratory

Middleware

• Different (better?) user interface
• HDF5
• MPI I/O
• ADIOS
• ArrayQL

• Better performance
• MPI I/O
• PLFS
• DeltaFS
• GIGA+

• They all have to deal with POSIX idiosyncrasies

5

Los Alamos National Laboratory

Complete Systems

• Huge effort
• Feature creep — even harder to finish
• Interoperability?

6

Los Alamos National Laboratory

Interfaces are important

• Simple
• Not too extendable, not too many knobs
• Too much freedom is bad, the designer should make the right choices

• ASGARD tries to be the best interface for something specific
• right level of description of data
• for distributed environment
• so data can be efficiently gathered from pieces scattered across many

nodes
• language and library independent

7

Los Alamos National Laboratory

Fragments

• Describe part of the dataset
• Contiguous
• Can be materialized in memory, or stored on disk

8

Los Alamos National Laboratory

Blocks

• Fragments consist of blocks
• Describe contiguous region of the fragment
• Can be connected to Blocks in other fragments
• Each Blocks has:

• offset
• size
• list of Blocks

• Three types of Blocks

9

Los Alamos National Laboratory

SBlock

• “Simple” Block
• Properties

• offset
• size
• list of Blocks (connections, same type and size)

• Examples:
• double -> SBlock of size 8
• uint32_t -> SBlock of size 4

10

Los Alamos National Laboratory

TBlock

• “sTruct” Block
• Groups other Blocks (of different sizes)
• Properties

• offset
• size
• list of Blocks (fields)
• list of Blocks (connections, same type)

• Offsets of the field Blocks relative to the start of the TBlock
• Can have holes

11

Los Alamos National Laboratory

ABlock

• “Array” Block
• Groups Blocks of the same type and size
• Properties:

• offset
• dimension sizes
• element order (row-major, column-major, etc.)
• element Block
• list of Destinations (connections)

• Destination
• Block
• (ai, bi, ci, di, idxi) for each dimension

12

Optimized Sca�er/Gather Data Operations for Parallel Storage PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA

3.1 DRepl Language
The DRepl language allows declaration of custom data types based
on a set of primitive types, as well as composite types such as arrays
or structs. Its syntax is loosely based on the syntax for type and
variable de�nitions in the Go language [8], which is similar to C or
C++. Details of the DRepl language are described earlier work [13].

3.2 Fragment Transformation
Once an abstract dataset and some fragment descriptions are de-
�ned, the user can generate transformation rules for converting data
from one fragment to another. Generally, only part of the fragment’s
data will be available in another fragment (i.e., fragments may only
partially overlap), and materializing a fragment may require data
frommultiple fragments.

Transformation rules are generated for a pair of fragments: a
source and a destination fragment. They de�ne what data from the
source fragment is needed, and how to convert it to the format of
the destination fragment.

The layout of a fragment is de�ned as a list of blocks. A block
represents a compact region within the fragment. It has an o�set
from the beginning of the fragment, as well as a size. The blocks can
be compound and contain references to other blocks. For example, a
block that describes a two-dimensional matrix, contains a reference
to a block that de�nes each element of thematrix.Within a fragment,
each block is either a top-level block that de�nes the fragment’s
layout, or is referencedbyexactly oneother block.Additionally, if the
data represented by the block is present in other fragments, the block
contains a reference to the respective source/destination blocks.

Currently ASGARD de�nes three types of blocks: SBlock, TBlock,
and ABlock. The simplest block, SBlock, de�nes a contiguous region
that is always read or replicated as a whole entity. All DRepl prim-
itive types are described as SBlocks. SBlocks don’t have references
to other blocks. In some cases an optimizer (see Section 4.1) can
coalesce multiple adjacent SBlocks into a single, bigger SBlock.

A TBlock is a collection of other blocks, generally with di�erent
sizes. It corresponds to a struct composite type in the DRepl lan-
guage. A TBlock contains a list of references to other blocks. Their
o�sets are relative to the o�set of the TBlock that points to them.
A TBlock can contain holes, or extra padding at the beginning and
the end of it, depending on the values of the sub-blocks’ o�sets. The
sub-blocks can’t overlap.

Finally, ABlock de�nes a multidimensional array of identical
blocks called elements. The de�nition of an ABlock includes its
dimension, number of elements in each dimension, and element
order. Currently ASGARD supports two element orders: row-major
and column-major, but the design is �exible enough to support the
addition of more types like a Hilbert curve [12] or a Z-order [16].

References to source/destination ABlocks in other fragments re-
quire additional information that speci�es relation between the posi-
tionsof elements in theblockwith elementsof the source/destination
block.Foreachdimensioni , thereare�ve integervalues (ai ,bi ,ci ,di ,idxi).
The element with index (x1,x2,...,xn) in the original ABlock corre-
sponds to an element (�1,�2,...�n) in the source/destination ABlock,
where

�idxi =
aixi+bi
cixi+di

frag0

ABlock [1000, 1000][i, j] SBlock

Dataset

SBlockABlock [80000, 80000]

[i, j]

[i-500, j-300]

frag1
SBlockABlock [5000, 6000]

[i+500, j+300]

src elem

src

dest0

dest1

dest0

element

src

src
elem

dest1

Figure 1: Example of a conversionmap of two fragments

If the value of the expression is not a whole number, the element
doesn’t have a corresponding element in the source/destination
block. Once the�j values are calculated, the o�set of the element is
calculatedusing the element order for the source/destinationABlock.

In complex datasets, the elements of an ABlock can be TBlocks,
which can in turn contain �elds that are ABlocks, with TBlock el-
ements, and so forth. Two fragments of the dataset can contain
di�erent subsets of elements and�elds for each of the blocks, andAS-
GARDwill recursively apply the correct transformations to convert
one fragment to the other.

Figure 1 shows the internal representation de�ned for the abstract
dataset, as well as the two fragments frag0 and frag1.

dataset {
var data[80000, 80000] float64

}
fragment frag0 {

var ds[i:1000, j:1000] = data[i, j]
}
fragment frag1 {

var a [i:5000, j:6000] = data[i+500, j+300]
}

The dataset has two blocks de�ned – an ABlock with 2 dimen-
sions [80000,80000]. Each element of the ABlock is a SBlock. Frag-
ment frag1 contains an ABlock with 2 dimensions [5000,6000]. The
ABlock is connected to corresponding ABlock in the dataset, where
element [i,j] from it corresponds to element [i+500,j+300] in the
dataset ABlock. Similarly, frag0 de�nes a smaller ABlock with 2
dimensions: [1000,1000] and its element [i,j] corresponds to the el-
ement with the same address in the dataset ABlock.

In distributed environments, where communication is expensive,
it is bene�cial to split the transformation rules into two parts. The re-
mote transformation rules extract the necessary data from the source
fragment and convert it into a compact intermediate bu�er that
can be e�ciently transmitted over the network to where the data
is needed. The local transformation rules use the data from the in-
termediate bu�er and place it in the right format in the destination
fragment.

The blocks in the fragments have the appropriate dataset blocks
as sources, and accordingly the dataset blocks have the fragments’

Los Alamos National Laboratory

Fragment

• Fragment
• Collection of Blocks
• Top-level Blocks

• Transformation (src, dest)
• For each top-level block in src

• SBlock — copy to each destination Block ∈ dest
• TBlock — recursively run for each field (keep offsets)
• ABlock — for each element with index [x1, x2, …, xn]

• calculate offset in src
• for each destination Block ∈ dest

• calculate index [y1, y2, …, yn] in dest
• calculate offset
• recursively run transformation for the element Block

13

Los Alamos National Laboratory

Transformation Rules

14

fragment dataset {
 var p struct {
 a, b, c float32
 }
}

fragment default {
 var p = p
}

fragment viz {
 var pa { a } = p
 var pba { b, a } = p
}

default

viz

T 0004pba

T 0000pa S 0000

S 0008

S 0004

T 0000p

S 0000

S 0004

S 0008

field a

field b

field a

field a

field b

field c

dest
dest

dest

dest

dest

dest

dest

Los Alamos National Laboratory

Fragment Sources

15

(A:0.25) (A:0.25 J:0.25)
(B:0.3) (B:0.2 J:0.2)
(D:0.4) (D:0.1 J:0.1)
(E:0.2) (E:0.3 J:0.3)

(H:1.0)
J

J

J
B C

F GED
A

H

B C
F GED

A

H

B C
F GED

A

H

Los Alamos National Laboratory

Transformation Rules

16

Node A

Node B Node C

Node D

rmt xform

rmt xform rmt xform

rmt xform

Node T

local xform local xform

local xform local xform

Los Alamos National Laboratory 17

ds

f1

f2

f3

S 000000:8

S 000000:8

dest0

S 000000:8

dest1

S 000008:4

S 000008:4

dest0

S 000012:8

S 000012:8

dest0

S 000008:8

dest1

S 000002:8

dest2

S 000020:2

S 000020:2

dest0

S 000000:2

dest1

T 000000:22
feld0

feld1

feld2

feld3

T 000000:22

dest0

T 000000:16

dest1

T 000000:10

dest2

A 000000:220000 (100, 100)

el

{ i } | { j }dest0

{ i } | { j }
dest1

{ i-25 } | { j-25 }

dest2

A 000000:110000 (100, 50)

A 000000:80000 (50, 100)

A 000000:25000 (50, 50)

dest0

dest0

dest0

dest0

dest0

feld0

feld1

feld2

feld3

el

{ i } | { j }

dest0

dest0

dest0

dest0

feld0

feld1

el

{ i } | { j }

dest0

dest0

dest0

dest0

feld0

feld1

el

{ i+25 } | { j+25 }

dest0

fragment ds {
 type P struct {
 a float64
 b float32
 c float64
 d int16
 }

 var data [100, 100] P
}

fragment f1 {
 var d1 = data
}

fragment f2 {
 var d2 { a, c } = data
}

fragment f3 {
 var d3[i, j] {d, c} =
 data[i-25, j-25]
}

Los Alamos National Laboratory

Optimizations

18

TBlockTBlock

SBlock

SBlock

SBlock

SBlock

SBlock

SBlock

SBlock

SBlock

SBlock

TBlockTBlock

SBlock

SBlock SBlock

SBlock

SBlock

SBlock

SBlock

TBlockTBlock

SBlock

SBlock

SBlock

SBlock

SBlock

SBlock

SBlock SBlock

SBlockSBlock

a. Merging neighboring fields

b. Replacing TBlock with a SBlock

ABlock

TBlock

…

…

…

…

…

…

…

TBlock

TBlock

ABlock

ABlock ABlock

TBlock

…

…

…

…

…

…

…

TBlock

TBlock

Los Alamos National Laboratory

Ceph Integration

• RADOS Objects - custom object class extension

• Dataset object
• metadata: dataset + stripe definitions
• no data

• Stripe object
• partial read/write using transformation rules
• write triggers updates to secondary replicas

• Client Side
• access unit is fragment
• server sends back list of objects and transformation rules
• executes local transformation rules, sends to OSD remote

transformation rules (+ data)

19

Los Alamos National Laboratory

Results: MPI Tile I/O

20

0

20

40

60

80

100

120

140

160

500 1000 1500 2000 2500 3000 3500 4000 4500

Ba
nd
w
id
th
(M
B/
s)

Tile Size

Write

ASGARD
Collective MPI I/O

Non-collective MPI I/O

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 3000 3500 4000 4500
Tile Size

Read

ASGARD
Collective MPI I/O

Non-collective MPI I/O

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

Ba
nd
w
id
th
(M
B/
s)

Number Of Ranks

Write

ASGARD
Collective MPI I/O

Non-collective MPI I/O

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100
Number Of Ranks

Read

ASGARD
Collective MPI I/O

Non-collective MPI I/O

Los Alamos National Laboratory

Results: HPIO Read

21

0

200

400

600

800

1000

1200

1400

1600

1800

100000 1x106 1x107

Ba
nd
w
id
th
(M
B/
s)

Contiguous Memory / Contiguous Storage

ASGARD
Collective MPI I/O

Non-collective MPI I/O

0

200

400

600

800

1000

1200

100000 1x106 1x107

Contiguous Memory / Non-contiguous Storage

ASGARD
Collective MPI I/O

Non-collective MPI I/O

100

200

300

400

500

600

700

800

900

1000

1100

100000 1x106 1x107

Ba
nd
w
id
th
(M
B/
s)

Region Count

Non-contiguous Memory / Contiguous Storage

ASGARD
Collective MPI I/O

Non-collective MPI I/O

0

100

200

300

400

500

600

100000 1x106 1x107

Region Count

Non-contiguous Memory / Non-contiguous Storage

ASGARD
Collective MPI I/O

Non-collective MPI I/O

Los Alamos National Laboratory

Ceph Bandwidth

22

0

100

200

300

400 ASGARD

0

100

200

300

400

Ba
nd
w
id
th
(M
B/
s)

Collective MPI I/O

0

100

200

300

400

0 500 1000 1500 2000
Time(s)

Non-collective MPI I/O

Los Alamos National Laboratory

Ceph Operations

23

0
50
100
150

Time(s)

ASGARD

0
50
100
150

Time(s)

Collective MPI I/O

0

400

800

1100

0 500 1000 1500 2000

O
pe
ra
tio
ns

pe
rs
ec
on
d

Time(s)

Non-collective MPI I/O

Los Alamos National Laboratory

Conclusions

• ASGARD defines language and library independent data description
• Compact transformation rules
• Small transformation engine (3K LOC) with implementations in Go and C
• Easy to integrate in storage systems and libraries

• Questions:
• is it the right level of data description?
• does it make sense to push for general file systems?
• what else did we miss?
• do we need byte order (LSB, MSB) and/or primary type (IEEE 754,

integer)?

24

