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Background
• Commodity DRAM is hitting the memory/bandwidth wall

– Off-chip bandwidth is not growing at the rate necessary for the 
recent growth in the number of cores

– Each core has a decreasing amount of off-chip bandwidth

Bahi, Mouad & Eisenbeis, Christine. (2011). High Performance by Exploiting Information 
Locality through Reverse Computing. 25-32. 10.1109/SBAC-PAD.2011.10. 
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Motivation
• Caching avoids 

memory/bandwidth wall

• Large gap between 
existing LLC’s and DRAM
– Capacity
– Bandwidth
– Latency

• Stacked DRAM LLC’s have 
shown 21% improvement 
(Alloy Cache[1])
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What is Stacked DRAM?
• 1-16GB capacity
• 8-15x the bandwidth of off-

chip DRAM [1], [2]

• Half or one-third the latency 
[3], [4], [5]

• Variants:
– High Bandwidth Memory (HBM)
– Hybrid Memory Cube (HMC)
– Wide I/O
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Related Work
• Many proposals for stacked DRAM LLC’s [1][2][6][7][11]

• They are not practical
– Not designed for existing stacked DRAM architecture
– Major modifications to memory controller/existing hardware

• They don’t take advantage of processing in memory (PIM)
– HBM’s built-in logic die
– Tag/data access could be two serial memory accesses
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How are tags stored?
• Cache address space smaller than 

memory address space
– “Tag” stores extra bits of address
– Tags are compared to determine 

cache hit/miss

• Solutions:
– Tags in stacked DRAM
– Memory controller does tag 

comparisons
– Two separate memory accesses
– Serial vs. Parallel access
– “Alloyed” Tag/Data structure for a 

single access

MC DRAM MC DRAM

Invalid data if tag misses

Serial Parallel
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Alloy Cache [1]

• Tag and data fused together as 
one unit (TAD)

• Best performing stacked DRAM 
cache (21% improvement)

• Used as comparison by many 
papers

• Limitations:
– Irregular burst size
– Wastes capacity (32B per row)
– Direct mapped only
– Not designed for existing stacked 

DRAM architecture

Extra burst for tag

MC DRAM

Invalid data if tag misses

Alloy
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Our Idea

1. Use HBM for our stacked DRAM LLC
– Best balance of price, power consumption, bandwidth
– Contains logic die

2. HBM logic die performs cache management

3. Store tag and data on different stacked DRAM channels
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Logic Die Design

• Less bandwidth over data bus

• Memory controller is simple
– No tag comparisons
– Sees HBM Cache as ordinary 

DRAM device
– Minor modification for Cache 

Result signal

• Requires new “Cache Result” 
signal

– Signals hit, clean miss, dirty miss, 
invalid, etc.

Logic Die

Address translator
(single address to tag 

address + data address)

Command translator
(single command to 

command for tag + data)

Scheduler

Data buffer

Tag comparator

HBM

Cache 
result signal

Command/
Address Bus

Data Bus

(Tags)

Stacked DRAM

(Data)
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Tag/Data on Different Channels

• 16 pseudo-channels
– Use 1 pseudo-channel for tags 
– Use 15 pseudo-channels for data

• Benefits:
– Parallel tag/data access
– Higher capacity than Alloy cache

• Data channels have zero wasted space
• Tag channel wastes 16MB total
• Alloy cache wastes 64MB total

Processor

HBM

Logic Die

T     D      D     D

Memory 
Controller

D     D      D     D

D     D      D     D

D     D      D     D
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Test Configurations

3. Separate Tag/Data Channels2. Logic Die Cache Management
MC Logic Die DRAM

Extra burst for tag

MC Logic Die DRAM MC Logic Die DRAM

1. Alloy Cache (baseline)

Invalid data if tag misses

Data only if 
tag hits

Data only if 
tag hits

Extra burst
for tag

• Implemented on HBM
• Logic die unused

• Cache management moved 
to logic die

• Still using Alloy TAD’s

• Cache management still on 
logic die

• Tag/Data separated

“Alloy” “Alloy-like” “SALP” 
(sub-array level parallelism)
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Max Max

Improved Theoretical Bandwidth and Capacity

Separate channels for Tag and Data (SALP) result in
significant bandwidth and capacity improvements
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Improved Theoretical Hit Latency

• Timing parameters 
based on Samsung 
DDR4 8GB spec.

• Write buffering on 
logic die

• SALP adds additional 
parallelism
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Simulators
• GEM5 [8]

– Custom configuration for a multi-core architecture with HBM last-level cache
– Full system simulation: boots linux kernel and loads a custom disk image

• NVMain [9]

– Contains a model for Alloy Cache
– Created two additional models for Alloy-like and SALP

• Configurable parameters:
– Number of CPU’s, frequency, bus widths, bus frequencies
– Cache size, associativity, hit latency, frequency
– DRAM timing parameters, architecture, energy/power parameters
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Simulated System Architecture
CPU0

L1-Instruction L1-Data

CPU1 CPU3

Shared L2

Main Memory

HBM Cache
(NVMain)

CPU2
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Performance Benefit - Bandwidth

Alloy-like SALP

Minimum -0.30% (UA) -0.72% (Dedup)

Maximum 25.53% (Swaptions) 7.07% (FT)

Arithmetic Mean 3.10% 1.22%

Geometric Mean 2.89% 1.19%

Alloy-like 
configuration has 

higher average 
bandwidth
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Performance Benefit – Execution Time

Alloy-like SALP

Minimum -0.20% (IS) -0.42% (UA)

Maximum 4.26% (FT) 6.59% (FT)

Arithmetic Mean 0.92% 1.73%

Geometric Mean 0.93% 1.76%

SALP
configuration has 

lower average 
execution time
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Conclusions
• Beneficial in certain cases 

– Theoretical results indicate noticeable performance 
benefit

– Categorize benchmarks that perform well with HBM cache
– Benchmark analysis to decide cache configuration

• Already in progress for Intel Knights Landing

• Much simpler memory controller
– Equal or better performance
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Outline
• Background
• Contribution 1: full-system simulation infrastructure
• Contribution 2: self-managed HBM cache
• Appendix
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Background

[Source: “Memory systems for PetaFlop to ExaFlop class machines” by IBM, 2007 & 2010]

Linear to Exponential demand for Memory Bandwidth and Capacity



22

Overview
• Background

– Stacked DRAM cache as a high bandwidth, high capacity 
last-level cache potentially improves system performance

– Prior results [1]: 21% performance improvement 
• Challenges

– [Challenge 1] Unclear about the benefit of HBM cache
• We need a way to study the HBM cache and understand its 

benefits
– [Challenge 2] With minimal changes to the current HBM2 

spec, how to best architect HBM caches
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Contributions
• Solution to [Challenge 1]: Brought up and augmented the Gem5 and NVMain

simulators to study HBM cache in a full-system environment
– Simulates a fully bootable linux kernel on top of custom HBM LLC architecture
– Simulator can be easily modified for system changes
– Created 3 different cache configurations to test
– Integrated PARSEC/NAS benchmarks using cross-compiler

• Solution to [Challenge 2]: Proposed two HBM cache with in-HBM (logic die) cache 
manager
– Type 1: Alloy-like. Data and tag in the same row. Uses pseudo channel and in-

HBM cache manager to reduce tag/data transfers between the host and the 
HBM.

– Type 2: SALP. Data and tag on different pseudo channels. We use subarray 
level parallelism to further improve performance.
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Motivation
• Caching avoids the memory/bandwidth wall
• Large gap between existing last-level caches (LLC’s) 

and DRAM
– Modern workloads demand hundreds of MB’s of LLC [2], [3]
– Existing stacked DRAM LLC’s have shown up to 21% system 

performance improvement [1]
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Stacked DRAM Variants
• Hybrid Memory Cube (HMC)

– High end servers/enterprise
– Highest bandwidth, cost, power
– Used in Knights Landing Processor
– Backed by Intel (proprietary)
– PCB connectivity

• HBM
– Graphics, HPC, networking
– Slightly less bandwidth, cost, power than HMC
– Used in Nvidia GPU’s
– JEDEC standard, created by Micron/AMD
– Logic die

• Wide I/O
– Smartphones, mobile
– Lowest bandwidth, cost, power
– JEDEC standard
– Lots of thermal issues, sits directly on top of processor

Best Choice
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Outline
• Background
• Contribution 1: full-system simulation infrastructure
• Contribution 2: self-managed HBM cache
• Appendix
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Benchmarks
• PARSEC

– Pre-compiled and ready to run
– Some benchmarks aren’t very stressful for the memory system

• NAS
– Expected to stress the memory system
– Used cross-compiler and scripts to compile and integrate with GEM5
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Outline
• Background
• Contribution 1: full-system simulation infrastructure
• Contribution 2: self-managed HBM cache
• Appendix
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Techniques for self-managed HBM cache
• Pseudo channel

– Benefit: reduce wasted bandwidth to transfer tag

• Logic die with in-HBM cache manager
– Benefit: reduce unnecessary tag/data burst from HBM to 

Host

• SALP
– Benefit: enable tag/data parallel access 
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Tag and data organizations
• Host-managed Alloy cache (baseline)

– 32B unused per row (wastes 64MB total)
– 4.2 million less cache lines than our proposal

• Self-managed Alloy-like HBM Cache
– Tag and data arranged exactly like Alloy cache
– Longer burst length internally, but not externally

• Self-managed SALP HBM Cache
– Reserve 1 pseudo-channel (256MB) for tags and the other 15 for data
– 60M cache lines require 60M tags
– 60M, 4B tags requires 240MB of space (wastes 16MB total)
– 60M, 64B cache lines require 15 tag bits, 2 valid/dirty bits (17 bits total)
– 4B tags have 15 bits leftover for miscellaneous flags, coherency bits, etc.
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Pseudo channel
• HBM2 spec:

– Default: 8 channels, 128b-wide
– Configurable: 16 pseudo channels, 64b-wide

• Why use pseudo channel?
– Normal channel

• 1 access = 128b
• But tag is only 4B (32b)
• Wasting 96b (75%) of channel

– Pseudo channel
• 1 access = 64b
• Wasting 32b (50%) of channel

– Pseudo channel organization saves 25% internal data IO bandwidth 
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SALP (subarray level parallelism)
Problem:
• Data can be accessed in parallel, but tag accesses may experience a bank conflict
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SALP (subarray level parallelism)
Solution:
• SALP: Each bank has 16 subarrays, which can be accessed in parallel
• Each subarray stores a different tag
• Accesses can still be processed concurrently even though they are in the same bank
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Future Work
• Study types of applications with 

workloads that would benefit from 
HBM

• Study the effect of HBM cache on 
fused-architecture processors
– GPU simulation
– Shared LLC and main memory
– Private lower level caches

• Add complexity to the logic die to 
enable cache associativity (replacement 
policies)

• Add complexity to logic die to support 
coherency across multiple nodes

• Investigate fault tolerance

Estimation based on [1]
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Outline
• Background
• Contribution 1: full-system simulation infrastructure
• Contribution 2: self-managed HBM cache
• Summary
• Appendix



Serial
• Read Hit
• Read Miss – Invalid, Read Miss – Valid Clean
• Read Miss – Valid Dirty
• Write Hit
• Write Miss – Invalid, Write Miss – Valid Clean
• Write Miss – Valid Dirty
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DRAM Memory 
Controller

Logic Die 3D DRAM 
Array

Read access 15ns

+15ns
(hit)

(50ns)

(0ns)

Latency: 110.25ns 
Energy: 14

Write access 30ns

40



DRAM Memory 
Controller

Logic Die 3D DRAM 
Array

Read access 15ns

(miss)
+15ns

(50ns)

(0ns)

Write access

Write access

30ns

30ns

(110.25ns)

Latency: 170.5ns 
Energy: 21

41



DRAM Memory 
Controller

Logic Die 3D DRAM 
Array

Read access 15ns

(miss)
+15ns

(50ns)

(0ns)

Write access

dirtyDataResp
Read access

Write access

Write access

4ns(85ns)

+15ns

(160.25ns)

30ns

15ns

30ns

30nsLatency: 220.5ns 
Energy: 35

42



Parallel
• Read Hit
• Read Miss – Invalid, Read Miss – Valid Clean
• Read Miss – Valid Dirty
• Write Hit
• Write Miss – Invalid, Write Miss – Valid Clean
• Write Miss – Valid Dirty
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Latency Optimized
• Read Hit
• Read Miss – Invalid, Read Miss – Valid Clean
• Read Miss – Valid Dirty
• Write Hit
• Write Miss – Invalid, Write Miss – Valid Clean
• Write Miss – Valid Dirty
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Energy Optimized
• Read Hit
• Read Miss – Invalid, Read Miss – Valid Clean
• Read Miss – Valid Dirty
• Write Hit
• Write Miss – Invalid, Write Miss – Valid Clean
• Write Miss – Valid Dirty
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