
Pufferbench:	Evaluating	and	
Optimizing	Malleability	of	

Distributed	Storage
Nathanaël Cheriere,	Matthieu Dorier,	Gabriel	Antoniu

PDSW-DISCS	2018,	Dallas



Data	is	everywhere

High	variety	of	applications High	variety	of	needs



Resource	requirements	vary	in	time

Day/night	cycles

Weekly	cycles

Workflows



Problem:
What	about	task/data	colocation?

• Local	data	access
• Easy	scalability

Why?
• Satisfy	resource	requirements
• Peaks
• Low

• Avoid	idle	nodes
üSave	money
üSave	energy

Dynamically	adjust	the	amount	of	resources?

?	Storage	system	malleability	üComputing	resources	malleability



Two	operations:

Commission Decommission

Constraints:	
• No	data	losses
• Maintain	fault	tolerance
• Balance	data	

Problems:	
• Long	data	transfers	



What	is	the	duration	of	storage	rescaling	on	a	
given	platform?

• Previous	works:	lower	bounds
• Useful	but	unrealistic
• Many	simplifications

• Need	a	tool	to	measure	it	on	real	hardware

How	fast	can	one	scale	down	a	distributed	 file	system?,	N.	Cheriere,	G.	Antoniu,	Bigdata 2017
A	Lower	Bound	 for	the	Commission	Times	in	Replication-Based	Distributed	Storage	Systems.	N.	Cheriere,	
M.	Dorier,	G.	Antoniu. [Research	Report	– Submitted	 to	JPDC]	2018



A	benchmark:	Pufferbench

Goals:
• Measure	the	duration	of	rescaling	on	a	platform
• Serve	as	a	quick	prototyping	testbed for	rescaling	mechanisms

How:
• Do	all	I/Os that	are	needed	by	a	rescaling



Main	steps

1. Migration	Planning
2. Data	Generation
3. Execution
4. Statistics	Aggregation



Software	Architecture



MetadataGenerator:	Generate	information	about	files	on	the	storage	(number,size)

Software	Architecture



DataDistributionGenerator:	Assign	files	to	storage	nodes

Software	Architecture



DataTransferScheduler:	Compute	data	transfers	needed	for	rescaling

Software	Architecture



IODispatcher:	Assign	transfer	instructions	to	storage	and	network

Software	Architecture



Storage:	Interface	with	the	storage	devices

Software	Architecture



Network:	Exchange	data	between	nodes

Software	Architecture



DataDistributionValidator:	Compute	statistics	about	data	placement	(load,	
replication)

Software	Architecture



Validation

Hardware
• Up	to	40	nodes
• 16	cores,	2.4	GHz
• 128	GB	RAM
• 558	GB	disk
• 10	Gbps ethernet

Comparison	to	lower	bounds
Matching	hypotheses:
• Load	balancing	(50	GB	per	node)
• Uniform	data	distribution
• Data	replication

Differences:
• Hardware	is	not	identical
• Storage	has	latency
• Network	has	latency	and	interferences



Pufferbench is	close	to	lower	bounds!

1 2 3 4 5 6 7

0
5

10
15

20
25

30

Number of decommissionned nodes (out of a cluster of 20)

Ti
m

e 
to

 d
ec

om
m

is
si

on
 (s

)

0
5

10
15

20
25

30
Decommission times

Pufferbench
Theoretical minimum

1 2 3 4 5 6 7

0
50

10
0

15
0

Number of decommissionned nodes (to a cluster of 20)

Ti
m

e 
to

 d
ec

om
m

is
si

on
 (s

)

0
50

10
0

15
0

Decommission times
Pufferbench
Theoretical minimum

0 5 10 15 20 25 30

15
20

25
30

35
40

Number of commissionned nodes (to a cluster of 10)

Ti
m

e 
to

 c
om

m
is

si
on

 (s
)

15
20

25
30

35
40

Commission times
Pufferbench
Theoretical minimum

0 5 10 15 20 25 30

10
0

15
0

20
0

25
0

Number of commissionned nodes (to a cluster of 10)

Ti
m

e 
to

 c
om

m
is

si
on

 (s
)

10
0

15
0

20
0

25
0

Commission times
Pufferbench
Theoretical minimum

Co
m
m
iss
io
n

De
co
m
m
iss
io
n

In	memory	storage On	drive	storage

Within	16%	of	lower	bounds
Lower	bounds	are	realistic



Use	case:	HDFS

Question:	How	fast	can	the	rescaling	in	HDFS	be?

No	modifications	of	HDFS

With	Pufferbench:
• Reproduce	initial	conditions
• Aim	for	same	final	data	placement



Pufferbench matching	HDFS’s	rescaling

• Chunks	of	128	MiB

• Random	placement
• Replicated	3	times

• Load	balanced
• Mostly	random



HDFS	needs	better	disk	I/Os

1 2 3 4 5 6 7

0
10

0
30

0
50

0
70

0

Number of decommissionned nodes (to a cluster of 20)

Ti
m

e 
to

 d
ec

om
m

is
si

on
 (s

)

0
10

0
30

0
50

0
70

0
0

10
0

30
0

50
0

70
0

Decommission times
Measured on HDFS
Pufferbench
Theoretical minimum

1 2 3 4 5 6 7

0
5

10
15

20
25

30
35

Number of decommissionned nodes (out of a cluster of 20)

Ti
m

e 
to

 d
ec

om
m

is
si

on
 (s

)

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

Decommission times
Measured on HDFS
Pufferbench
Theoretical minimum

In	memory	storage On	drive	storage

Improvement	possible	on	disk	access	patterns	

3	x

Commission



0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

Number of commissionned nodes (to a cluster of 10)

Ti
m

e 
to

 c
om

m
is

si
on

 (s
)

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

Commission times
Measured on HDFS
Pufferbench
Theoretical minimum

HDFS	is	far	from	optimal	performances!

0 5 10 15 20 25 30

0
20

0
40

0
60

0
80

0
10

00

Number of commissionned nodes (to a cluster of 10)

Ti
m

e 
to

 c
om

m
is

si
on

 (s
)

0
20

0
40

0
60

0
80

0
10

00
0

20
0

40
0

60
0

80
0

10
00

Commission times
Measured on HDFS
Pufferbench
Theoretical minimum

In	memory	storage On	drive	storage

Improvement	possible	on	algorithms,	disk	access	patterns,	pipelining	

14	x	

Commission



Setup	duration

Setup	overhead	for	the	commission	in	memory:
• HDFS:	26	h
• Pufferbench:	53	min	

Good	for	prototyping:
• Fast	evaluation
• Light	setup



Pufferbench:
• Evaluate	the	viability	of	storage	malleability	on	platforms
• Quickly	prototype	and	evaluate	rescaling	mechanisms

Available	at	https://gitlab.inria.fr/Puffertools/Pufferbench
Can	be	installed	with	Spack

To	conclude



To	conclude

Pufferbench:
• Evaluate	the	viability	of	storage	malleability	on	platforms
• Quickly	prototype	and	evaluate	rescaling	mechanisms

Available	at	https://gitlab.inria.fr/Puffertools/Pufferbench
Can	be	installed	with	Spack

Thank	you!																	Questions?
nathanael.cheriere@irisa.fr


