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New Applications and Systems: Demand for New Services

ALCF 2021 EXASCALE SUPERCOMPUTER – A21
Intel/Cray Aurora supercomputer planned for 2018 shifted to 2021

Scaled up from 180 PF to over 1000 PF

7

NRE: HW and SW engineering and productization
ALCF-3 ESP: Application Readiness
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NRE contract award
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Rebaseline review

Build/Delivery

ALCF-3 Facility and Site Prep, Commissioning

Acceptance

DataSimulation Learning

Support for three “pillars”

Top image credit B. Helland (ASCR). Bottom left and right images credit ALCF. Bottom center image credit OLCF.
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• Different application use cases have different data needs
• “One size fits all” doesn’t work: need customized data services for 

each to meet mission goals
• This poses a significant technical challenge: how to enable rapid 

development of such services (agility) while still preserving 
performance (efficiency) and production quality (maintainability)

Key idea: address this challenge via composable data services.
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Towards reusable components for data services

Parallel 
File Systems

Hand-crafted
Data Services

Advantages
• Well established
• Standard interface
Drawbacks
• Single consistency model
• Complex to maintain and tune
• Files often inappropriate
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Parallel 
File Systems

Hand-crafted
Data Services

Advantages
• Well established
• Standard interface
Drawbacks
• Single consistency model
• Complex to maintain and tune
• Files often inappropriate

Advantages
• Tuned for this application
• Appropriate consistency model
• Appropriate data model
Drawbacks
• Difficult to maintain
• Not reusable
• Scare users

• Reusable across services
• Easy to maintain
• Not so scary to users
• Adaptable, configurable
• Can use latest tech

Composable micro-services
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Common capabilities need by data services

● Runtime substrate

○ RPC, RDMA

○ Threading/Tasking

● Core components

○ Bulk storage management

○ Key/Value storage

○ Group membership

○ Diagnostics and monitoring

● Programmability/Expressiveness

○ Embedded interpreters

○ Wrappers (Python, C++, etc.)
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Challenges in Composing HPC Microservices

● Formalize composition
● Unify single-process, multi-

process, single-node, and multi-
node designs

● Maximize efficient use of 
resources (network, storage)
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Vision
Lowering the barriers to distributed 
services in computational science.

Approach
● Familiar models (key/value, object, file)
● Easy to build, adapt, and deploy
● Lightweight, user-space components
● Modern hardware support

Impact
● Better, more capable services for specific use 

cases on high-end platforms
● Significant code reuse
● Ecosystem for service development

http://www.mcs.anl.gov/research/projects/mochi/ HPC
Fast Transports
Scientific Data
User-level Threads

Cloud
Computing

Object Stores
Key-Value Stores

Distributed 
Computing

Group 
Membership
Communication

Software 
Engineering

Composability

Autonomics
Dist. Control
Adaptability

Mochi



Let’s dive into the methodology
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Matching building blocks to user requirements

User 
Requirements

Service 
Requirements

Composition 
and 

Interfacing

Building 
Blocks

Data model
Access pattern
Guaranties

Data organization
Metadata organization
User interface

Composition glue code
API implementation

Runtime
Service providers
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Identifying application needs

• Which data model?
• Arrays, meshes, objects
• Namespace, metadata

• Which access pattern?
• Characteristics (e.g. access sizes)
• Collective/individual accesses

• Which guarantees?
• Consistency
• Performance
• Persistence

User 
Requirements
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Service 
RequirementsDefining service requirements

• Which data model?
• Arrays, meshes, objects
• Namespace, metadata

• Which access pattern?
• Characteristics (e.g. access sizes)
• Collective/individual accesses

• Which guarantees?
• Consistency
• Performance
• Persistence

• How should data be organized?
• Sharding, distribution, replication

• How should metadata be organized?
• Distribution, content, indexing

• How do clients interface with the service?
• Programming language, API
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What do components look like?
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Components: engineering challenges

• How do components share resource (CPU, network, memory) 
without interfering with one another?
• Bad approach: each component has its own progress loop

• How do we leverage massively multi-core nodes to, for 
instance, assign components to cores, make components 
efficiently share a core, prevent components from interfering 
with network progress?…
• Bad approach: each component manages its own thread(s)

• How can we support a wide range of networks?
• Bad approach: reimplement for new transport every time the code is 

ported to a new platform
20
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Anatomy of a Mochi componentBuilding 
Blocks
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Composition made very easy

• Example composition code in Python
• (components themselves are programmed in C or C++)

# some import statements here

mid = MargoInstance("gni")

bake_provider = BakeProvider(mid, 1)
bake_provider.add_storage_target("/local/ssd/space.dat")

sdskv_provider = SDSKVProvider(mid, 1)
sdskv_provider.add_database("mydatabase", "/tmp/sdskv",

pysdskv.server.leveldb))

mid.wait_for_finalize()

BAKE component managing
RDMA to storage target

SDSKV component 
managing a database

Initializing Margo runtime (using 
Cray GNI network for Mercury)
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HEPnOS
Fast event-store for High Energy 

Physics experiments
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User 
Requirements

Storing “products”
• From experiments
• From simulations or analysis workflows

Data model
• Products are instances of C++ objects
• Hierarchy: datasets, runs, subruns, events
• Products are labeled by an “input tag”

Access pattern
• Write-once-read-many
• Products accessed atomically
• Access by input tag and by type
• Iterators to navigate the hierarchy
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User 
Requirements

Envisioned usage
• Long-running (weeks), resizable cache based 

on fast, in-compute-node storage (SSDs, 
NVRAM, local memory)

• Accessed by multiple applications 
concurrently

• Backed-up by a more permanent storage 
system (parallel file system, archive system, 
object store) when undeployed
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Service 
Requirements

How objects should be distributed?
• Based on the hash of a “path-like” string
• <dataset>/<run>/<subrun>/<event>/<input-tag>/<object-type>
• myproject/mydata%45%23%678#exp1_alpha_std::map<int,Particle>

Should objects be sharded?
• No

Should objects be replicated?
• Maybe

How should metadata be managed?
• Same path-like strings as products
• Hash is based on the “parent” path in the hierarchy so that all 

containers belonging to the same parent end up on the same node

What should the API look like?
• C++ with template metaprogramming to handle storage of any type of 

object, and iterator constructs to navigate the hierarchy
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Margo runtime
(Mercury + Argobots)

BAKE

SDS-KeyVal

Client

RPC

RDMA

PMEM

LevelDB

C++ API

Composition 
and 

Interfacing

Building 
Blocks

Boost, YAML
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Code sample of HEPnOS#include <hepnos.hpp>

// example structure
struct Particle {

float x, y, z; // member variables
// serialization function for boost to use
template<typename A>
void serialize(A& a, unsigned long version) {

ar & x & y & z;
}

};
// initialize a handle to the HEPnOS datastore
hepnos::DataStore datastore( "config.yaml" );
// access a nested dataset
hepnos::DataSet ds = datastore[ "path/to/dataset" ];
// access run 43 in the dataset
hepnos::Run run = ds[43];
// access subrun 56
hepnos::SubRun subrun = run[56];
// access event 25
hepnos::Event ev = subrun[25];
// store data (an std::vector of Particle)
st::vector<Particle> vp1 = ...;
ev.store(“mylabel”, vp1);
// load data
std::vector<Particle> vp2;
sv.load(“mylabel”, vp2);
// iterate over the subruns in a run 
// using a C++ range-based for
for(auto& subrun : run) { ... }

• Boost for serialization of C++ classes

• “map”-like interface in DataStore, DataSet, 
Run, and Subrun classes

• Template “load” and “store” methods

• Iterators to navigate the hierarchy
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Taking a step back: other Mochi services

● FlameStore
○ Python interface, Python composition
○ Stores Deep Neural networks
○ Flat namespace
○ BAKE storing NumPy arrays
○ SDSKeyVal storing model metadata in JSON format
○ Embedded python interpreter to modify models within storage

● SDSDKV
○ C interface, C++ composition
○ Distributed key/value store
○ Used for the ParSplice application (molecular dynamics)
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Lightweight: Source Lines of Code (SLOC)
Component Client Server Other External Users

Core
Argobots 15,193 Intel, LLNL, Mainz
Mercury 27,979 Intel, LBL, LLNL, Mainz
Margo 1,625 Intel, LLNL, Mainz
Thallium 3,913
SSG 2,203 + 131 (py-ssg)
MDCS 906

Microservices
SDSKV 1,392 2,881 234 (py-sdskv)
BAKE 949 1,273 514 (py-bake)
POESIE 343 689

Composed 
Services

HEPnOS 2,689 321 FNAL
FlameStore 334 438
Mobject 1,498 5,044
SDSDKV 407 601
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Conclusion: use componentization!

● Monolithic file systems are often suboptimal
● Data services are better
● Efficiently building custom data services is a challenge
● Composed data services is key to productivity

Thank you! Questions?

Personal thanks to the Spack developers who make our lives much easier as we develop these services!
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