
Methodology for the Rapid Development of
Scalable HPC Data Services

PDSW-DISCS 2018
Dallas, TX

Matthieu Dorier, Philip Carns, Kevin Harms, Robert Latham, Robert Ross, Shane Snyder,
Justin Wozniak, Samuel K. Gituérrez, Bob Robey, Brad Settlemyer, Galen Shipman,

Jerome Soumagne, James Kowalkowski, Marc Paterno, Saba Sehrish

1

New Applications and Systems: Demand for New Services

ALCF 2021 EXASCALE SUPERCOMPUTER – A21
Intel/Cray Aurora supercomputer planned for 2018 shifted to 2021

Scaled up from 180 PF to over 1000 PF

7

NRE: HW and SW engineering and productization
ALCF-3 ESP: Application Readiness

CY 2017 CY 2018 CY 2019 CY 2020 CY 2021 CY 2022

NRE contract award
Build contract modification

Pre-planning
review Design review

Rebaseline review

Build/Delivery

ALCF-3 Facility and Site Prep, Commissioning

Acceptance

DataSimulation Learning

Support for three “pillars”

Top image credit B. Helland (ASCR). Bottom left and right images credit ALCF. Bottom center image credit OLCF.
2

New Applications and Systems: Demand for New Services

ALCF 2021 EXASCALE SUPERCOMPUTER – A21
Intel/Cray Aurora supercomputer planned for 2018 shifted to 2021

Scaled up from 180 PF to over 1000 PF

7

NRE: HW and SW engineering and productization
ALCF-3 ESP: Application Readiness

CY 2017 CY 2018 CY 2019 CY 2020 CY 2021 CY 2022

NRE contract award
Build contract modification

Pre-planning
review Design review

Rebaseline review

Build/Delivery

ALCF-3 Facility and Site Prep, Commissioning

Acceptance

DataSimulation Learning

Support for three “pillars”

Top image credit B. Helland (ASCR). Bottom left and right images credit ALCF. Bottom center image credit OLCF.

• Different application use cases have different data needs
• “One size fits all” doesn’t work: need customized data services for

each to meet mission goals
• This poses a significant technical challenge: how to enable rapid

development of such services (agility) while still preserving
performance (efficiency) and production quality (maintainability)

Key idea: address this challenge via composable data services.

3

Towards reusable components for data services

Parallel
File Systems

Hand-crafted
Data Services

Advantages
• Well established
• Standard interface
Drawbacks
• Single consistency model
• Complex to maintain and tune
• Files often inappropriate

4

Towards reusable components for data services

Parallel
File Systems

Hand-crafted
Data Services

Advantages
• Well established
• Standard interface
Drawbacks
• Single consistency model
• Complex to maintain and tune
• Files often inappropriate

Advantages
• Tuned for this application
• Appropriate consistency model
• Appropriate data model
Drawbacks
• Difficult to maintain
• Not reusable
• Scare users

5

Towards reusable components for data services

Parallel
File Systems

Hand-crafted
Data Services

Advantages
• Well established
• Standard interface
Drawbacks
• Single consistency model
• Complex to maintain and tune
• Files often inappropriate

Advantages
• Tuned for this application
• Appropriate consistency model
• Appropriate data model
Drawbacks
• Difficult to maintain
• Not reusable
• Scare users

• Reusable across services
• Easy to maintain
• Not so scary to users
• Adaptable, configurable
• Can use latest tech

Composable micro-services

6

Common capabilities need by data services

● Runtime substrate

○ RPC, RDMA

○ Threading/Tasking

● Core components

○ Bulk storage management

○ Key/Value storage

○ Group membership

○ Diagnostics and monitoring

● Programmability/Expressiveness

○ Embedded interpreters

○ Wrappers (Python, C++, etc.)

7

Common capabilities need by data services

● Runtime substrate

○ RPC, RDMA

○ Threading/Tasking

● Core components

○ Bulk storage management

○ Key/Value storage

○ Group membership

○ Diagnostics and monitoring

● Programmability/Expressiveness

○ Embedded interpreters

○ Wrappers (Python, C++, etc.)

8

Common capabilities need by data services

● Runtime substrate

○ RPC, RDMA

○ Threading/Tasking

● Core components

○ Bulk storage management

○ Key/Value storage

○ Group membership

○ Diagnostics and monitoring

● Programmability/Expressiveness

○ Embedded interpreters

○ Wrappers (Python, C++, etc.)

9

Common capabilities need by data services

● Runtime substrate

○ RPC, RDMA

○ Threading/Tasking

● Core components

○ Bulk storage management

○ Key/Value storage

○ Group membership

○ Diagnostics and monitoring

● Programmability/Expressiveness

○ Embedded interpreters

○ Wrappers (Python, C++, etc.)

● Composed services

○ FlameStore

○ HEPnOS

○ SDSDKV

10

Challenges in Composing HPC Microservices

● Formalize composition
● Unify single-process, multi-

process, single-node, and multi-
node designs

● Maximize efficient use of
resources (network, storage)

11

Vision
Lowering the barriers to distributed
services in computational science.

Approach
● Familiar models (key/value, object, file)
● Easy to build, adapt, and deploy
● Lightweight, user-space components
● Modern hardware support

Impact
● Better, more capable services for specific use

cases on high-end platforms
● Significant code reuse
● Ecosystem for service development

http://www.mcs.anl.gov/research/projects/mochi/ HPC
Fast Transports
Scientific Data
User-level Threads

Cloud
Computing

Object Stores
Key-Value Stores

Distributed
Computing

Group
Membership
Communication

Software
Engineering

Composability

Autonomics
Dist. Control
Adaptability

Mochi

Let’s dive into the methodology

13

Matching building blocks to user requirements

User
Requirements

Service
Requirements

Composition
and

Interfacing

Building
Blocks

Data model
Access pattern
Guaranties

Data organization
Metadata organization
User interface

Composition glue code
API implementation

Runtime
Service providers

14

Identifying application needs

• Which data model?
• Arrays, meshes, objects
• Namespace, metadata

• Which access pattern?
• Characteristics (e.g. access sizes)
• Collective/individual accesses

• Which guarantees?
• Consistency
• Performance
• Persistence

User
Requirements

15

Identifying application needs

• Which data model?
• Arrays, meshes, objects
• Namespace, metadata

• Which access pattern?
• Characteristics (e.g. access sizes)
• Collective/individual accesses

• Which guarantees?
• Consistency
• Performance
• Persistence

User
Requirements

16

Identifying application needs

• Which data model?
• Arrays, meshes, objects
• Namespace, metadata

• Which access pattern?
• Characteristics (e.g. access sizes)
• Collective/individual accesses

• Which guarantees?
• Consistency
• Performance
• Persistence

User
Requirements

17

Service
RequirementsDefining service requirements

• Which data model?
• Arrays, meshes, objects
• Namespace, metadata

• Which access pattern?
• Characteristics (e.g. access sizes)
• Collective/individual accesses

• Which guarantees?
• Consistency
• Performance
• Persistence

• How should data be organized?
• Sharding, distribution, replication

• How should metadata be organized?
• Distribution, content, indexing

• How do clients interface with the service?
• Programming language, API

18

What do components look like?

19

Components: engineering challenges

• How do components share resource (CPU, network, memory)
without interfering with one another?
• Bad approach: each component has its own progress loop

• How do we leverage massively multi-core nodes to, for
instance, assign components to cores, make components
efficiently share a core, prevent components from interfering
with network progress?…
• Bad approach: each component manages its own thread(s)

• How can we support a wide range of networks?
• Bad approach: reimplement for new transport every time the code is

ported to a new platform
20

Building
Blocks

Components: engineering challenges

• How do components share resource (CPU, network, memory)
without interfering with one another?
• Bad approach: each component has its own progress loop

• How do we leverage massively multi-core nodes to, for
instance, assign components to cores, make components
efficiently share a core, prevent components from interfering
with network progress?…
• Bad approach: each component manages its own thread(s)

• How can we support a wide range of networks?
• Bad approach: reimplement for new transport every time the code is

ported to a new platform
21

Building
Blocks

Components: engineering challenges

• How do components share resource (CPU, network, memory)
without interfering with one another?
• Bad approach: each component has its own progress loop

• How do we leverage massively multi-core nodes to, for
instance, assign components to cores, make components
efficiently share a core, prevent components from interfering
with network progress?…
• Bad approach: each component manages its own thread(s)

• How can we support a wide range of networks?
• Bad approach: reimplement for new transport every time the code is

ported to a new platform
22

Building
Blocks

Anatomy of a Mochi componentBuilding
Blocks

23

Building
Blocks

24

Anatomy of a Mochi component

Building
Blocks

25

Anatomy of a Mochi component

Building
Blocks

26

Anatomy of a Mochi component

Building
Blocks

27

Anatomy of a Mochi component

Building
Blocks

28

Anatomy of a Mochi component

Building
Blocks

29

Anatomy of a Mochi component

Building
Blocks

30

Anatomy of a Mochi component

Composition made very easy

• Example composition code in Python
• (components themselves are programmed in C or C++)

some import statements here

mid = MargoInstance("gni")

bake_provider = BakeProvider(mid, 1)
bake_provider.add_storage_target("/local/ssd/space.dat")

sdskv_provider = SDSKVProvider(mid, 1)
sdskv_provider.add_database("mydatabase", "/tmp/sdskv",

pysdskv.server.leveldb))

mid.wait_for_finalize()

BAKE component managing
RDMA to storage target

SDSKV component
managing a database

Initializing Margo runtime (using
Cray GNI network for Mercury)

31

HEPnOS
Fast event-store for High Energy

Physics experiments

32

User
Requirements

Storing “products”
• From experiments
• From simulations or analysis workflows

Data model
• Products are instances of C++ objects
• Hierarchy: datasets, runs, subruns, events
• Products are labeled by an “input tag”

Access pattern
• Write-once-read-many
• Products accessed atomically
• Access by input tag and by type
• Iterators to navigate the hierarchy

33

User
Requirements

Storing “products”
• From experiments
• From simulations or analysis workflows

Data model
• Products are instances of C++ objects
• Hierarchy: datasets, runs, subruns, events
• Products are labeled by an “input tag”

Access pattern
• Write-once-read-many
• Products accessed atomically
• Access by input tag and by type
• Iterators to navigate the hierarchy

34

User
Requirements

Storing “products”
• From experiments
• From simulations or analysis workflows

Data model
• Products are instances of C++ objects
• Hierarchy: datasets, runs, subruns, events
• Products are labeled by an “input tag”

Access pattern
• Write-once-read-many
• Products accessed atomically
• Access by input tag and by type
• Iterators to navigate the hierarchy

35

User
Requirements

Envisioned usage
• Long-running (weeks), resizable cache based

on fast, in-compute-node storage (SSDs,
NVRAM, local memory)

• Accessed by multiple applications
concurrently

• Backed-up by a more permanent storage
system (parallel file system, archive system,
object store) when undeployed

36

Service
Requirements

How objects should be distributed?
• Based on the hash of a “path-like” string
• <dataset>/<run>/<subrun>/<event>/<input-tag>/<object-type>
• myproject/mydata%45%23%678#exp1_alpha_std::map<int,Particle>

Should objects be sharded?
• No

Should objects be replicated?
• Maybe

How should metadata be managed?
• Same path-like strings as products
• Hash is based on the “parent” path in the hierarchy so that all

containers belonging to the same parent end up on the same node

What should the API look like?
• C++ with template metaprogramming to handle storage of any type of

object, and iterator constructs to navigate the hierarchy

37

Service
Requirements

How objects should be distributed?
• Based on the hash of a “path-like” string
• <dataset>/<run>/<subrun>/<event>/<input-tag>/<object-type>
• myproject/mydata%45%23%678#exp1_alpha_std::map<int,Particle>

Should objects be sharded?
• No

Should objects be replicated?
• Maybe

How should metadata be managed?
• Same path-like strings as products
• Hash is based on the “parent” path in the hierarchy so that all

containers belonging to the same parent end up on the same node

What should the API look like?
• C++ with template metaprogramming to handle storage of any type of

object, and iterator constructs to navigate the hierarchy

38

Service
Requirements

How objects should be distributed?
• Based on the hash of a “path-like” string
• <dataset>/<run>/<subrun>/<event>/<input-tag>/<object-type>
• myproject/mydata%45%23%678#exp1_alpha_std::map<int,Particle>

Should objects be sharded?
• No

Should objects be replicated?
• Maybe

How should metadata be managed?
• Same path-like strings as products
• Hash is based on the “parent” path in the hierarchy so that all

containers belonging to the same parent end up on the same node

What should the API look like?
• C++ with template metaprogramming to handle storage of any type of

object, and iterator constructs to navigate the hierarchy

39

Service
Requirements

How objects should be distributed?
• Based on the hash of a “path-like” string
• <dataset>/<run>/<subrun>/<event>/<input-tag>/<object-type>
• myproject/mydata%45%23%678#exp1_alpha_std::map<int,Particle>

Should objects be sharded?
• No

Should objects be replicated?
• Maybe

How should metadata be managed?
• Same path-like strings as products
• Hash is based on the “parent” path in the hierarchy so that all

containers belonging to the same parent end up on the same node

What should the API look like?
• C++ with template metaprogramming to handle storage of any type of

object, and iterator constructs to navigate the hierarchy

40

Service
Requirements

How objects should be distributed?
• Based on the hash of a “path-like” string
• <dataset>/<run>/<subrun>/<event>/<input-tag>/<object-type>
• myproject/mydata%45%23%678#exp1_alpha_std::map<int,Particle>

Should objects be sharded?
• No

Should objects be replicated?
• Maybe

How should metadata be managed?
• Same path-like strings as products
• Hash is based on the “parent” path in the hierarchy so that all

containers belonging to the same parent end up on the same node

What should the API look like?
• C++ with template metaprogramming to handle storage of any type of

object, and iterator constructs to navigate the hierarchy

41

Margo runtime
(Mercury + Argobots)

BAKE

SDS-KeyVal

Client

RPC

RDMA

PMEM

LevelDB

C++ API

Composition
and

Interfacing

Building
Blocks

Boost, YAML

42

Code sample of HEPnOS#include <hepnos.hpp>

// example structure
struct Particle {

float x, y, z; // member variables
// serialization function for boost to use
template<typename A>
void serialize(A& a, unsigned long version) {

ar & x & y & z;
}

};
// initialize a handle to the HEPnOS datastore
hepnos::DataStore datastore("config.yaml");
// access a nested dataset
hepnos::DataSet ds = datastore["path/to/dataset"];
// access run 43 in the dataset
hepnos::Run run = ds[43];
// access subrun 56
hepnos::SubRun subrun = run[56];
// access event 25
hepnos::Event ev = subrun[25];
// store data (an std::vector of Particle)
st::vector<Particle> vp1 = ...;
ev.store(“mylabel”, vp1);
// load data
std::vector<Particle> vp2;
sv.load(“mylabel”, vp2);
// iterate over the subruns in a run
// using a C++ range-based for
for(auto& subrun : run) { ... }

• Boost for serialization of C++ classes

• “map”-like interface in DataStore, DataSet,
Run, and Subrun classes

• Template “load” and “store” methods

• Iterators to navigate the hierarchy

43

Taking a step back: other Mochi services

● FlameStore
○ Python interface, Python composition
○ Stores Deep Neural networks
○ Flat namespace
○ BAKE storing NumPy arrays
○ SDSKeyVal storing model metadata in JSON format
○ Embedded python interpreter to modify models within storage

● SDSDKV
○ C interface, C++ composition
○ Distributed key/value store
○ Used for the ParSplice application (molecular dynamics)

44

Lightweight: Source Lines of Code (SLOC)
Component Client Server Other External Users

Core
Argobots 15,193 Intel, LLNL, Mainz
Mercury 27,979 Intel, LBL, LLNL, Mainz
Margo 1,625 Intel, LLNL, Mainz
Thallium 3,913
SSG 2,203 + 131 (py-ssg)
MDCS 906

Microservices
SDSKV 1,392 2,881 234 (py-sdskv)
BAKE 949 1,273 514 (py-bake)
POESIE 343 689

Composed
Services

HEPnOS 2,689 321 FNAL
FlameStore 334 438
Mobject 1,498 5,044
SDSDKV 407 601

45

Conclusion: use componentization!

● Monolithic file systems are often suboptimal
● Data services are better
● Efficiently building custom data services is a challenge
● Composed data services is key to productivity

Thank you! Questions?

Personal thanks to the Spack developers who make our lives much easier as we develop these services!

46

This work is in part supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. DE-AC02-06CH11357; in part supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nation’s exascale computing imperative; and in part supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program.
This work was done in the context of the DOE SSIO project "Mochi" (https://www.mcs.anl.gov/research/projects/mochi/), a Software Defined
Storage Approach to Exascale Storage Services.

