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Objectives

 Deep Learning (DL) applications demand large-scale computing facilities.

 DL applications require efficient I/O support in the data processing pipeline to 

accelerate the training phase.

 The goals of this project are

 Exploring I/O patterns invoked through multiple DL applications running on 

HPC systems

 Addressing possible bottlenecks caused by I/O in the training phase

 Developing optimization strategies to overcome the possible I/O bottlenecks
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HEPCNNB Overview

 High Energy Physics Deep Learning Convolutional Neural Network Benchmark 

(HEPCNNB)

 Runs on distributed TensorFlow using Horovod

 Can generate particle events that can be described by standard model physics 

and particle events with R-parity violating Supersymmetry

 Uses a 496 GB dataset of 2048 HDF5 files representing particle collisions 

generated by a fast Monte-Carlo generator named Delphes at CERN
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CDB Overview

 Climate Data Benchmark (CDB)

 Runs on distributed TensorFlow using Horovod

 Can act as an image recognition model to detect patterns for extreme weather

 Uses a 3.5 TB dataset of 62738 HDF5 images representing climate data

 Leverages TensorFlow Dataset API and python’s multiprocessing package for 

input pipelining
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Profiling Approaches

 Develop TimeLogger tool based on python to profile application layer

 Determine the total latency from merged interval list for each training component

 Explore TensorFlow Runtime Tracing Metadata Visualization (TRTMV) tool 

developed at Google and extract I/O specific metadata

 Working on integration of runtime metadata from application and framework layer

 Work available in: https://github.com/NERSC/DL-Parallel-IO
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HEPCNNB Latency Breakdown
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Local Shuffle Global Shuffle
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 I/O takes more time when Global Shuffling is introduced

 Global Shuffling affects I/O even for small dataset and only 5 epochs training

 I/O bottleneck can become more severe with increasing epochs



HEPCNNB Read Bandwidth
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 I/O takes more time when Global Shuffling is introduced

 Global Shuffling affects I/O even for small dataset and only 5 epochs training

 I/O bottleneck can become more severe with increasing epochs
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CDB Latency and Read Bandwidth
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 The percentage of I/O in the training process is more when dataset is larger

 The I/O percentage increases with the number of nodes

 Training benefits more from the scaling than I/O
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Future Work

 To integrate TRTMV results with TimeLogger data for better profiling of highly 

parallelized I/O pipeline

 To explore the I/O patterns and determine possible I/O bottlenecks in distributed 

TensorFlow

 To develop an optimized cross-framework I/O strategy to overcome the possible 

I/O bottlenecks
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