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Objectives

» Deep Learning (DL) applications demand large-scale computing facilities.

» DL applications require efficient I/O support in the data processing pipeline to
accelerate the training phase.

» The goals of this project are

» Exploring I/O patterns invoked through multiple DL applications running on
HPC systems

» Addressing possible bottlenecks caused by I/O in the training phase

» Developing optimization strategies to overcome the possible I/0 bottlenecks

Office of
Science 4




Objectives

» Deep Learning (DL) applications demand large-scale computing facilities.

» DL applications require efficient I/O support in the data processing pipeline to
accelerate the training phase.

» The goals of this project are

~ Exploring 1/0 patterns invoked through multiple DL applications running on
HPC systems

» Addressing possible bottlenecks caused by I/0 in the training phase

» Developing optimization strategies to overcome the possible I/0 bottlenecks

Office of
Science >




Outline

» Objectives

> DL Benchmarks at NERSC
» Profiling Approaches

» Experimental Results

» Future Work

U.S. DEPARTMENT OF Office of
@ ENERGY Science o



HEPCNNB Overview

» High Energy Physics Deep Learning Convolutional Neural Network Benchmark
(HEPCNNB)

> Runs on distributed TensorFlow using Horovod

» Can generate particle events that can be described by standard model physics

and particle events with R-parity violating Supersymmetry

» Uses a 496 GB dataset of 2048 HDF5 files representing particle collisions

generated by a fast Monte-Carlo generator named Delphes at CERN
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CDB Overview

» Climate Data Benchmark (CDB)
» Runs on distributed TensorFlow using Horovod

» Can act as an image recognition model to detect patterns for extreme weather
» Uses a 3.5 TB dataset of 62738 HDF5 images representing climate data

» Leverages TensorFlow Dataset APl and python’s multiprocessing package for
input pipelining
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Profiling Approaches

» Develop TimelLogger tool based on python to profile application layer
» Determine the total latency from merged interval list for each training component

» Explore TensorFlow Runtime Tracing Metadata Visualization (TRTMV) tool

developed at Google and extract I/O specific metadata
» Working on integration of runtime metadata from application and framework layer

» Work available in: https://github.com/NERSC/DL-Parallel-10
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https://github.com/NERSC/DL-Parallel-IO
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HEPCNNB Latency Breakdown
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> 1/0 takes more time when Global Shuffling is introduced
» Global Shuffling affects I/O even for small dataset and only 5 epochs training
» 1/0 bottleneck can become more severe with increasing epochs
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HEPCNNB Read Bandwidth
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> 1/0 takes more time when Global Shuffling is introduced
» Global Shuffling affects I/O even for small dataset and only 5 epochs training
» 1/0 bottleneck can become more severe with increasing epochs
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CDB Latency and Read Bandwidth
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» The percentage of I/0 in the training process is more when dataset is larger
» The |/O percentage increases with the number of nodes
» Training benefits more from the scaling than I/0

Office of

ENERGY Science e




Outline

» Objectives

» DL Benchmarks at NERSC
» Profiling Approaches

» Experimental Results

» Future Work

U.S. DEPARTMENT OF Ofﬁce Of
@ ENERGY Science -15-



Future Work

» To integrate TRTMV results with TimelLogger data for better profiling of highly
parallelized 1/0 pipeline

» To explore the 1/O patterns and determine possible |/O bottlenecks in distributed

TensorFlow

» To develop an optimized cross-framework 1/O strategy to overcome the possible
1/0 bottlenecks
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