
Lessons and Predictions from 25 Years of
Parallel Data Systems Development

BRENT WELCH DIRECTOR, ARCHITECTURE

PARALLEL DATA STORAGE WORKSHOP SC11

Parallel Data Storage Workshop SC11 2

OUTLINE

§  Theme
•  Architecture for robust distributed systems
•  Code structure

§  Ideas from Sprite
•  Naming vs I/O
•  Remote Waiting
•  Error Recovery

§  Ideas from Panasas
•  Distributed System Platform
•  Parallel Declustered Object RAID

§  Open Problems, especially at ExaScale
•  Getting the Right Answer
•  Fault Handling
•  Auto Tuning
•  Quality of Service

Parallel Data Storage Workshop SC11 3

WHAT CUSTOMERS WANT

§  Ever Scale, Never Fail, Wire Speed Systems
•  This is our customer’s expectation

§  How do you build that?
•  Infrastructure
•  Fault Model

Parallel Data Storage Workshop SC11 4

IDEAS FROM SPRITE

§  Sprite OS
•  UC Berkeley 1984 to 1990’s under John Ousterhout
•  Network of diskless workstations and file servers
•  From scratch on Sun2, Sun3, Sun4, DS3100, SPUR hardware
−  680XX, 8MHz, 4MB, 4-micron, 40MB, 10Mbit/s (“Mega”)

•  Supported 5 professors and 25-30 grad student user population
•  4 to 8 grad students built it. Welch, Fred Douglas, Mike Nelson, Andy

Cherenson, Mary Baker, Ken Shirriff, Mendel Rosenblum, John Hartmann

§  Process Migration and a Shared File System
•  FS cache coherency
•  Write back caching on diskless file system clients
•  Fast parallel make
•  LFS log structured file system

§  A look under the hood
•  Naming vs I/O
•  Remote Waiting
•  Host Error Monitor

Parallel Data Storage Workshop SC11 5

§  Naming
•  Create, Open, GetAttr, SetAttr,

Delete, Rename, Hardlink

§  I/O
•  Open, Read, Write, Close, Ioctl

§  3 implementations each API
•  Local kernel
•  Remote kernel
•  User-level process

§  Compose different naming
and I/O cases

VFS: NAMING VS IO

Name API I/O API

RPC
Remote Kernel

Local
(Devices, FS)

User Space
Daemons

POSIX System Call API RPC Service

Parallel Data Storage Workshop SC11 6

NAMING VS I/O SCENARIOS

File Server(s)

Names for Devices
and Files

Storage for Files

Diskless Node

Local Devices

Special Node

Shared Devices

/dev/console
/dev/keyboard

/host/allspice/dev/tape

Directory tree is on file
servers

Devices are local or on
a specific host

Namespace divided by
prefix tables

User-space daemons
do either/both API

User Space Daemon

/tcp/ipaddr/port

Parallel Data Storage Workshop SC11 7

SPRITE FAULT MODEL

Kernel Operation

OK or ERROR

WOULD_BLOCK

RPC Timeout

RECOVERY

UNBLOCK

Parallel Data Storage Workshop SC11 8

REMOTE WAITING

§  Classic Race
•  WOULD_BLOCK reply races with UNBLOCK message
•  Race ignores unblock and request waits forever

§  Fix: 2-bits and a generation ID
•  Process table has “MAY_BLOCK” and “DONT_WAIT” flag bits
•  Wait generation ID incremented when MAY_BLOCK is set
•  DONT_WAIT flag is set when race is detected based on generation ID

Op Request

UNBLOCK

MAY_BLOCK
generation++

DONT_WAIT

Parallel Data Storage Workshop SC11 9

HOST ERROR MONITOR

§  API: Want Recovery, Wait for Recovery, Recovery Notify
•  Subsystems register for errors
•  High-level (syscall) layer waits for error recovery

§  Host Monitor
•  Pings remote peers that need recovery
•  Triggers Notify callback when peer is ready
•  Makes all processes runnable after notify callbacks complete

Remote Kernel

Ping
Host Monitor

Notify Want

Parallel Data Storage Workshop SC11 10

SPRITE SYSTEM CALL STRUCTURE

§  System call layer handles blocking conditions, above VFS API
Fs_Read(streamPtr, buffer, offset, lenPtr) {

 setup parameters in ioPtr

 while (TRUE) {

 Sync_GetWaitToken(&waiter);

 rc = (fsio_StreamOpTable[streamType].read)
 (streamPtr, ioPtr, &waiter, &reply);

 if (rc == FS_WOULD_BLOCK) {

 rc = Sync_ProcWait(&waiter);

 }

 if (rc == RPC_TIMEOUT || rc == FS_STALE_HANDLE ||

 rc == RPC_SERVICE_DISABLED) {

 rc = Fsutil_WaitForRecovery(streamPtr->ioHandlePtr, rc);

 }

 break or continue as appropriate

}

Parallel Data Storage Workshop SC11 11

SPRITE REMOTE ACCESS

§  Remote kernel access uses RPC and must handle errors
Fsrmt_Read(streamPtr, ioPtr, waitPtr, replyPtr) {

 loop over chunks of the buffer {

 rc = Rpc_Call(handle, RPC_FS_READ, parameter_block);

 if (rc == OK || rc == FS_WOULD_BLOCK) {

 update chunk pointers

 continue, or break on short read or FS_WOULD_BLOCK

 } else if (rc == RPC_TIMEOUT) {

 rc = Fsutil_WantRecovery(handle);

 break;

 }

 if (done) break;

 }

 return rc;

}

Parallel Data Storage Workshop SC11 12

§  System Call Layer
•  Sets up to prevent races
•  Tries an operation
•  Waits for blocking I/O or error

recovery w/out locks held

§  Subsystem
•  Takes Locks
•  Detects errors and registers the

problem
•  Reacts to recovery trigger
•  Notifies waiters

SPRITE ERROR RETRY LOGIC

Name API I/O API

RPC
Remote Kernel

Local
(Devices, FS)

User Space
Daemons

POSIX System Call API RPC Service

Sync_ProcWait
Fsutil_WaitForRecovery

Sync_ProcWakeup, Fsutil_WantRecovery

Parallel Data Storage Workshop SC11 13

SPRITE

§  Tightly coupled collection of OS instances
•  Global process ID space (host+pid)
•  Remote wakeup
•  Process migration
•  Host monitor and state recovery protocols

§  Thin “Remote” layer optimized by write-back file caching
•  General composition of the remote case with kernel and user services
•  Simple, unified error handling

Parallel Data Storage Workshop SC11 14

IDEAS FROM PANASAS

§  Panasas Parallel File System
•  Founded by Garth Gibson
•  1999-2011+
•  Commercial
•  Object RAID
•  Blade Hardware
•  Linux RPM to mount /panfs

§  Features
•  Parallel I/O, NFS, CIFS, Snapshots, Management GUI, Hardware/

Software fault tolerance, Data Management APIs

§  Distributed System Platform
•  Lamport’s PAXOS algorithm

§  Object RAID
•  NASD heritage

Parallel Data Storage Workshop SC11 15

PANASAS FAULT MODEL

Fault Tolerant Realm Manager

File System
Clients Service

Report Error

Backup

Heartbeat,
Control,
Config

File System
Clients File System

Clients File System
Clients File System

Clients

Txn
log

Txn
log

Config
DB

Parallel Data Storage Workshop SC11 16

PANASAS DISTRIBUTED SYSTEM PLATFORM

§  Problem: managing large numbers of hardware and software
components in a highly available system
•  What is the system configuration?
•  What hardware elements are active in the system?
•  What software services are available?
•  What software services are activated, or backup?
•  What is the desired state of the system?
•  What components are failed?
•  What recovery actions are in progress?

§  Solution: Fault-tolerant Realm Manager to control all other
software services and (indirectly) hardware modules.
•  Distributed file system one of several services managed by the RM
−  Configuration management
−  Software upgrade
−  Failure Detection
−  GUI/CLI management
−  Hardware monitoring

Parallel Data Storage Workshop SC11 17

MANAGING SERVICES

§  Control Strategy
•  Monitor -> Decide -> Control -> Monitor
•  Controls act on one or more distributed system elements that can fail
•  State Machines have “Sweeper” tasks to drive them periodically

Decision
State

Machine(s)

Configuration Update
Service Action
Hardware Control

Heartbeat
Status

Realm Manager Generic Manager

Parallel Data Storage Workshop SC11 18

FAULT TOLERANT REALM MANAGER

§  PTP Voting Protocol
•  3-way or 5-way redundant Realm Manager (RM) service
•  PTP (Paxos) Voting protocol among majority quorum to update state

§  Database
•  Synchronized state maintained in a database on each Realm Manager
•  State machines record necessary state persistently

§  Recovery
•  Realm Manager instances fail stop w/out a majority quorum
•  Replay DB updates to re-joining members, or to new members

PTP PTP

DB

RM

Decision
State

Machine(s)

DB

RM

Decision
State

Machine(s)

DB

RM

Decision
State

Machine(s)

Parallel Data Storage Workshop SC11 19

LEVERAGING VOTING PROTOCOLS (PTP)

§  Interesting activities require multiple PTP steps
•  Decide – Control – Monitor
•  Many different state machines with PTP steps for different product features
−  Panasas metadata services: primary and backup instances
−  NFS virtual server fail over (pools of IP addresses that migrate)
−  Storage server failover in front of shared storage devices
−  Overall realm control (reboot, upgrade, power down, etc.)

§  Too heavy-weight for file system metadata or I/O
•  Record service and hardware configuration and status
•  Don’t use for open, close, read, write

PanFS
MDS 7

Director

NFSd 23

PanFS
MDS 12

Director

NFSd 8

PanFS
MDS 4

Director

NFSd 17 Shared Storage

OSD
Server 1

OSD
Server 2

OSD
Server 3

Parallel Data Storage Workshop SC11 20

PANASAS DATA INTEGRITY

§  Object RAID
•  Horizontal, declustered striping with redundant data on different OSDs
•  Per-file RAID equation allows multiple layouts
−  Small files are mirrored RAID-1
−  Large files are RAID-5 or RAID-10
−  Very large files use two level striping scheme to counter network incast

§  Vertical Parity
•  RAID across sectors to catch silent data corruption
•  Repair single sector media defects

§  Network Parity
•  Read back per-file parity to achieve true end-to-end data integrity

§  Background scrubbing
•  Media, RAID equations, distributed file system attributes

Parallel Data Storage Workshop SC11 21

RAID AND DATA PROTECTION

§  RAID was invented for performance (striping data across many
slow disks) and reliability (recover failed disk)
•  RAID equation generates redundant data:
•  P = A xor B xor C xor D (encoding)
•  B = P xor A xor C xor D (data recovery)

§  Block RAID protects an entire disk

A B D C P => ^ ^ ^

Parallel Data Storage Workshop SC11 22

OBJECT RAID

§  Object RAID protects and rebuilds files
•  Failure domain is a file, which is typically much much smaller than the

physical storage devices
•  File writer is responsible for generating redundant data, which avoids

central RAID controller bottleneck and allows end-to-end checkng
•  Different files sharing same devices can have different RAID

configurations to vary their level of data protection and performance

F1 F2 F3 FP ^ ^ =>

G1 G2 G3 GP ^ ^ => GQ

H1 HM =>

,

RAID 4

RAID 6

RAID 1

Parallel Data Storage Workshop SC11 23

THE PROBLEM WITH BLOCK RAID

§  Traditional block-oriented RAID protects and rebuilds entire drives
•  Unfortunately, drive capacity increases have outpaced drive bandwidth
•  It takes longer to rebuild each new generation of drives
•  Media defects on surviving drives interfere with rebuilds

A => ^ ^ ^ B C D P

Parallel Data Storage Workshop SC11 24

BLADE CAPACITY AND SPEED HISTORY

Compare time to write a blade
(two disks) from end-to-end over
4* generations of Panasas blades
SB-4000 same family as SB-6000
Capacity increased 39x
Bandwidth increased 3.4x
(function of CPU, memory, disk)
Time goes from 44 min to > 8 hrs 0

100

200

300

400

500

600

SB-­‐160 SB-­‐800 SB-­‐2000 SB-­‐4000 SB-­‐6000

Minutes	
 to	
 Erase	
 2-­‐drive	
 Blade

0

1000

2000

3000

4000

5000

6000

7000

SB-­‐160 SB-­‐800 SB-­‐2000 SB-­‐4000 SB-­‐6000

Capacity	
 in	
 GB	
 of	
 2-­‐drive	
 Blade

0

50

100

150

200

250

SB-­‐160 SB-­‐800 SB-­‐2000 SB-­‐4000 SB-­‐6000

Local	
 2-­‐Disk	
 Bandwidth	
 in	
 MB/Sec

Parallel Data Storage Workshop SC11 25

TRADITIONAL RAID REBUILD

§  RAID requires I/O bandwidth, memory bandwidth and CPU
•  Rebuilding a 1TB drive in a 5-drive RAID group reads 4TB and writes 1TB
−  RAID-6 rebuilds after two failures require more computation and I/O

•  Rebuild workload creates hotspots
−  Parallel user workloads need uniform access to all spindles

§  Example: 2+1 RAID, 6 Drives, 2 Groups, 1 Spare Drive

F1
G1
H1

F2
G2
H2

FP
GP
HP

J1
K1
L1

J2
K2
L2

JP
KP
LP

S1
S2
S3

RAID Group 1 RAID Group 2 Spare

Read during rebuild Write during rebuild Unused during rebuild

Failed drive

F1
G1
H1

F2
G2
H2

FP
GP
HP

J1
K1
L1

J2
K2
L2

JP
KP
LP

S1
S2
S3

Parallel Data Storage Workshop SC11 26

DECLUSTERED DATA PLACEMENT

§  Declustered placement uses the I/O bandwidth of many drives
•  Declustering spreads RAID groups over larger number of drives to amplify

the disk and network I/O available to the RAID engines
•  2 Disks of data read from 1/3 or 2/3 of 5 remaining drives
−  With more placement groups (e.g., 100), finer grain load distribution

§  Example: 2+1 RAID, 6 Drives, 6 Groups

F1
K1
H1

J2
G2
L2

FP
KP

HP J1

G1

L1

F2

K2
H2

JP
GP LP

F1
K1
H1

J2
G2
L2

FP
KP

HP J1

G1

L1

F2

K2
H2

JP
GP LP

Failed drive

Read during rebuild Unused during rebuild

Parallel Data Storage Workshop SC11 27

DECLUSTERED SPARE SPACE

§  Declustered spare space improves write I/O bandwidth
•  1 Disk of data written to 1/3 of 2 or 3 remaining drives

§  Spare location places constraints that must be honored
•  Cannot rebuild onto a disk with another element of your group

§  Example: 2+1 RAID, 7 Drives, 6 Groups, 1 Spare

F1

K1
H1

J2
G1
L1

FP JP
HP J1

G2

L2

F2

K2
H2

KP
GP LP

S3 S1 S2

Parallel Data Storage Workshop SC11 28

PARALLEL DECLUSTERED RAID REBUILD

§  Parallel algorithms harness the power of many computers, and
for RAID rebuild, the I/O bandwidth of many drives
•  Group rebuild work can be distributed to multiple “RAID engines” that have

access to the data over a network
−  Scheduler task supervises worker tasks that do group rebuilds in parallel

•  Optimal placement is a hard problem (see Mark Holland, ‘98)
−  Example reads 1/3 of each remaining drive, writes 1/3 to half of them

Failed drive

Read during rebuild Write during rebuild Unused during rebuild

F1

K1
H1

J2
G1
L1

FP JP
HP J1

G2

L2

F2

K2
H2

KP
GP LP

S3/F1 S1/K1 S2/H1

Parallel Data Storage Workshop SC11 29

H
 G

 k E

PARALLEL DECLUSTERED OBJECT RAID

§  File attributes replicated on first two component objects
§  Component objects include file data and file parity
§  Components grow & new components created as data written
§  Per-file RAID equation creates fine-grain work items for rebuilds
§  Declustered, randomized placement distributes RAID workload

C
 F E

20 OSD
Storage
Pool

Mirrored
or 9-OSD
Parity
Stripes

Read about
half of each
surviving
OSD

Write a little
to each OSD

Scales up in
larger
Storage
Pools

Parallel Data Storage Workshop SC11 30

PANASAS SCALABLE REBUILD

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14
Shelves

One Volume, 1G Files
One Volume, 100MB Files
N Volumes, 1GB Files
N Volumes, 100MB Files

MB/sec Rebuild

§  RAID rebuild rate increases with storage pool size
•  Compare rebuild rates as the system size increases
•  Unit of growth is an 11-blade Panasas “shelf”
−  4-u blade chassis with networking, dual power, and battery backup

§  System automatically picks stripe width
•  8 to 11 blade wide parity group
−  Wider stripes slower

•  Multiple parity groups
−  Large files

§  Per-shelf rate scales
•  10 MB/s (old hardware)
−  Reading at 70-90 MB/sec
−  Depends on stripe width

•  30-40 MB/sec (current)
−  Reading at 200-300 MB/sec

width=11 width=8

scheduling
issue

width=9

Parallel Data Storage Workshop SC11 31

HARD PROBLEMS FOR TOMORROW

§  Issues for Exascale
•  Millions of cores
•  TB/sec bandwidth
•  Exabytes of storage
•  Thousands and Thousands of hardware components

§  Getting the Right Answer
§  Fault Handling

§  Auto Tuning
§  Quality of Service

§  Better/Newer devices

Parallel Data Storage Workshop SC11 32

GETTING THE RIGHT ANSWER

§  Verifying system behavior in all error cases will be very difficult
•  Are applications computing the right answer?
•  Is the storage system storing the right data?
•  Suppose I know the answer is wrong – what broke?
•  There may be no other computer on the planet capable of checking
•  It may or may not be feasible to prove correctness

§  The test framework should be at least as complicated as the
system under test

Bert Sutherland

Parallel Data Storage Workshop SC11 33

PROGRAMS THAT RUN FOREVER

§  Ever Scale, Never Fail, Wire Speed Systems
•  This is our customer’s expectation

§  If you can keep it stable as it grows, performance follows
•  Stability adds overhead

§  Humans and the system need to know what is wrong
•  Trouble shooting and auto correction will be critical features

System
Component

Is it functioning
correctly?
What’s wrong
in the system?

API

Parallel Data Storage Workshop SC11 34

RUGGED COMPONENTS

§  Functional API
•  Comes from customer requirements

§  Monitor, Debug API
•  Comes from testing and validation requirements

§  Self Checking
•  E.g., phone switch “audit” code keeps switches from failing

System
Component

Monitor and Debug API

Functional API

Self Check

Parallel Data Storage Workshop SC11 35

OBVIOUS STRATEGIES

§  Self checking components that
isolate errors
•  Protocol checksums and message

digests

§  Self correcting components that
mask errors
•  RAID, checkpoints, Realm Manager
•  Application-level schemes
−  map-reduce replay of lost work items

§  End-to-end checking
•  Overall back-stop
•  Application-generated checksums

Parallel Data Storage Workshop SC11 36

WHAT ABOUT PERFORMANCE?

§  QoS and Self-Tuning will grow in importance
•  QoS is a form of self-checking and self-correcting systems
•  How do you provide QoS w/out introducing bottlenecks?

§  Parallel batch jobs crush their competition
•  E.g., your “ls” or “tar xf” will starve behind the 100,000 core job

§  Stragglers hurt parallel jobs
•  Why do some ranks run much more slowly than others?
−  Compounded performance bias w/ lack of control system

§  The storage system needs self-awareness and control
mechanisms to help these problem scenarios
•  Open, close, read, write is the easy part
•  Your contributions will be on error handling and control systems

COMPANY CONFIDENTIAL 37

THANK YOU
WELCH@PANASAS.COM

