

Jay Lofstead (SNL), Jai Dayal (GT), Ivo Jimenez (ucsc), Carlos Maltzahn (ucsc)

Sandia National Labs./Georgia Tech/UC Santa Cruz

gflofst@sandia.gov

Parallel Data Storage Workshop

November 18, 2013

Exceptional

service

in the

national

interest

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

A Little History

- Georgia Tech 2005ish
 - How do we distinguish different parallel outputs?
- LWFS 2006
 - Transaction support for file systems
- LDRD 2010
 - General parallel transactions for data movement and system reconfig
- Lustre/Intel FastForward 2012+
 - Epochs
- SNL/GT & SNL/UCSC 2013+
 - Exploring application scenarios and alternatives

Why Transactions?

- All-or-nothing operations
- Grouping operations into an atomic set
- Well understood semantic
- Challenge: M clients to N servers

D²T Version 1.0 @ Cluster 2012

- First pass was a "Full" Protocol
- Client and server "sides" different
- Aggregate on each side to a single coordinator
- Coordinator-to-coordinator communication for configuration and metadata
- Invasive requirements on servers
- Overall transaction and a collection of sub-transactions

Version 1.0 Performance

- Adding a second server is bad!
- Total overhead would reach several seconds at scale

D²T Version 1.0 @ Cluster 2012

- Positives
 - Demonstrated one possibility for MxN transactions
 - Identified scaling bottlenecks
- Negatives
 - Multi-polling performance problems
 - Single point bottlenecks
 - Number and/or aggregate size of messages too big for a single node

Version 2.0 Changes

- Second aggregation level added
 - Solves message size/count problem
- Server requirements almost nonexistent, but with a catch
 - How to do vote/commit without a little server support?
- Multi-protocol polling eliminated
- Vastly better performance!

Version 2.0 Changes

- Multiple roles for some processes
- 0 is coordinator, sub-coordinator, and subordinate
- 3 is sub-coordinator and subordinate

\$1, \$2, \$3 are servers

Version 2.0 Global Knowledge

- Addressing failures requires global knowledge
 - Singleton sub-transactions
 - Global sub-transactions
 - Which processes are in which roles
- Must use a resilient protocol for communication or it all comes down

Version 2.0 Performance

Notes:

- Always used at least 2 sub-coordinators to slow it down
- Added a sub-coordinator when subordinate count exceeded 256
- 64K processes = 256 sub-coordinators with 256 subordinates each
- Overhead only for complete set of transaction calls (no op. costs)

Detailed Performance Numbers

- 64K processes case
 - txn_create_sub_transaction_all maximum time 0.0310 seconds (mean 0.01)
 - All other transaction ops < 0.005 seconds mean (0.012 maximum)
 - Protocol Init/finalize 0.38/0.0002 seconds.
 - Similar to MPI_Init/MPI_Finalize
 - Total time, worst case for each operation across all tests, for a transaction + sub-transactions start to finish < 0.45 seconds for 64K

Additional Features

- Fault detection
 - Overhead = timeout value + typical operation time
 - Targeting HPDC 2014 deadline
- Minimal metadata and data storage services as examples
 - No performance tuning, error checking, or scalability considerations

Next Steps

- UCSC/SNL transaction spectrum project
- GT/SNL use for "containers" project
- SNL use for data staging/in transit processing/code coupling
- Working with Intel/Lustre FastForward team to help inform their effort

Questions

Jay Lofstead

gflofst@sandia.gov