
Copyright © Fusion-io, Inc. All rights reserved.

FLASH IN THE DATACENTER
Nisha Talagala

NON VOLATILE MEMORY

Flash
▸  100s GB to 10 TB per

PCIe device
▸  Media trend – increase

in density, reduction of write cycles,
SLC/MLC/3BPC

▸  100s of thousands to millions of IOPS,
GB/s of bandwidth

PCM/MRAM/STT/Other NVMs
▸  Still in research
▸  Potential of extreme performance

increase

2 PDSW 8 – Supercomputing 13

HOW TO EFFECTIVELY USE FLASH?

Performance
▸  Closer to CPU – highest bandwidth, lowest latency
▸  Server (compute) side flash complements storage side flash

Hierarchy of DRAM, flash, disk
Disk displacement usages

▸  Caches – server and storage side
▸  Scale out and cluster file systems

•  flash in metadata server
•  storage server

▸  Staging, checkpoint

DRAM displacement usages
▸  Improved paging, semi-external memory

3 PDSW 8 – Supercomputing 13

NVM IN THE DATA CENTER TODAY

4

Web
front
Ends

Caching
tiers

 Database

and application
tiers

Storage
Flash

Flash Flash Flash DRAM and
Flash

Flash Flash Flash DRAM, flash
and disk

DRAM, flash
and disk Flash

PDSW 8 – Supercomputing 13

5

Non-Volatile Memory

Non-Volatile Storage

Volatile Memory

Volatile-Storage

Flash – Storage or Memory?
P

er
fo

rm
an

ce

Persistence

DRAM

Disk, Tape

Flash and
Other NVMs

Flash and
Other NVMs

MEMORY STORAGE CONVERGENCE

PDSW 8 – Supercomputing 13

EVOLUTION OF ENTERPRISE FLASH

FLASH AS DISK

Application

Application source code converts
native data structures into block I/O

Conventional I/O Access

Block I/O

NVM Devices/Media

F L A S H B E Y O N D D I S K

Application

Application source code does
I/O with native data structures

Enhanced I/O

Atomic I/O
Transaction

Key-Value
Transaction

Native
primitives

NVM Devices/Media

F L A S H A S M E M O R Y

Application

Application source code
manipulates native memory data

structures

Memory Access

Extended Memory Persistent Memory

NVM Devices/Media

PDSW 8 – Supercomputing 13

EVOLUTION OF ENTERPRISE FLASH

FLASH AS DISK

Application

Application source code converts
native data structures into block I/O

Conventional I/O Access

Block I/O

NVM Devices/Media

F L A S H B E Y O N D D I S K

Application

Application source code does
I/O with native data structures

Enhanced I/O

Atomic I/O
Transaction

Key-Value
Transaction

Native
primitives

NVM Devices/Media

F L A S H A S M E M O R Y

Application

Application source code
manipulates native memory data

structures

Memory Access

Extended Memory Persistent Memory

NVM Devices/Media

PDSW 8 – Supercomputing 13

SC11 GENERAL PARALLEL FILE
SYSTEM (GPFS) DEMO

8

▸  24 uncompressed 1080p videos (up to 6 GB/s of data)
▸  Five Fusion Powered GPFS-based NSD servers
▸  Three visualization workstations

PDSW 8 – Supercomputing 13

DEMO SOFTWARE SPECS

9

▸  RedHat Enterprise Linux 6.1 - InfiniBand Software Stack
▸  IBM GPFS (General Parallel File System) 3.4.0.8
▸  NVIDIA Linux Driver
▸  Fusion-io VSL 3

PDSW 8 – Supercomputing 13

DEMO HARDWARE SPECS

10

▸  Five 0.5U NSD Servers, each with six core dual socket CPUs,
12 GB RAM, InfiniBand HCA, and an ioDrive2

▸  3 Visualization workstations, with an InfiniBand HCA and an
NVIDIA graphics card

▸  36-port QDR InfiniBand switch

PDSW 8 – Supercomputing 13

November 16, 2013 Fusion-io Confidential 11

+
Software

Your Server
Becomes a Shared
Flash Storage
Appliance

ION DATA ACCELERATOR – HIGH AVAILABILITY

12

LUN 0 LUN 0

LUN 1 LUN 1

LUN 0 LUN 1

40Gb

PDSW 8 – Supercomputing 13

ION – FREEDOM OF CHOICE

SOFTWARE

Leverage your buying power

FULLY INTEGRATED SOLUTION

▸  Leverage your buying power
▸  Integrate
▸  Support

•  ION Software (via Fusion-io)
•  Server (via server OEM)
•  ioDrive (via your supplier)

▸  No hassles, partner integrated
▸  Support

•  End-to-End Fusion-io Support

13 PDSW 8 – Supercomputing 13

EVOLUTION OF ENTERPRISE FLASH

FLASH AS DISK

Application

Application source code converts
native data structures into block I/O

Conventional I/O Access

Block I/O

NVM Devices/Media

F L A S H B E Y O N D D I S K

Application

Application source code does
I/O with native data structures

Enhanced I/O

Atomic I/O
Transaction

Key-Value
Transaction

Native
primitives

NVM Devices/Media

F L A S H A S M E M O R Y

Application

Application source code
manipulates native memory data

structures

Memory Access

Extended Memory Persistent Memory

NVM Devices/Media

PDSW 8 – Supercomputing 13

15

Area Hard Disk Drives Flash Devices

Logical to Physical
Blocks

Nearly 1:1 Mapping Remapped at every write

Read/Write
Performance

Largely symmetrical Heavily asymmetrical.
Additional operation
(erase)

Sequential vs Random
Performance

100x difference. Elevator
scheduling for disk arm

<10x difference. No disk
arm – NAND die

Background operations Rarely impact foreground Regular occurrence. If
unmanaged - can impact
foreground

Wear out Largely unlimited writes Limited writes

IOPS 100s to 1000s 100Ks to Millions

Latency 10s ms 10s-100s us

NVM (FLASH, OTHER) IS DIFFERENT FROM DISK

PDSW 8 – Supercomputing 13

CONVENTIONAL I/O ACCESS

16

APPLICATION

Application source code

Simple
Block

Network
File

Simple
Block

Proprietary Storage OS

Non Volatile Memory Media

Native Flash Translation Layer

Storage Media

Conventional I/O access

PDSW 8 – Supercomputing 13

MULTI-QUEUE I/O IN LINUX*

•  Extending Linux block I/O to support NVM performance
•  Multi-queue

•  Software queues, Hardware queues
•  Per CPU issue/completion, multi-socket scaling
•  Matches inherent parallelism in NVM devices and CPUs
•  Supports upcoming queue oriented standards models

•  Performance
•  3.5x – 10x increase in IOPS (from ~1M to 3.5-10M)
•  10x – 38x reduction in I/O stack latency

*Linux Block I/O: Introducing Multiqueue SSD Access on Multicore Systems
 Bjorling M., Axboe J., Nellans D., Bonnett P.
 SYSTOR 2013
University of Copenhagen and Fusion-io

PDSW 8 – Supercomputing 13

DIRECT-ACCESS I/O THROUGH NATIVE
INTERFACES

18

APPLICATION

Application source code

Transactional
Block

Native
File

Key-Value
Object

Simple
Block

Network
File

Simple
Block

Proprietary Storage OS

Non Volatile Memory Media

Native Flash Translation Layer

Storage Media

Conventional I/O access

Direct access I/O

PDSW 8 – Supercomputing 13

FLASH PRIMITIVES: SAMPLE USES AND BENEFITS

19

Databases
Transactional Atomicity:
Replace various workarounds
implemented in database code to
provide write atomicity (MySQL
double-buffered writes, etc.)

Filesystems
File Update Atomicity:
Replace various workarounds
implemented in filesystem code to
provide file/directory update
atomicity (journaling, etc.)

▸  98% performance of raw writes
Smarter media now natively
understands atomic updates, with no
additional metadata overhead.

▸  2x longer flash media life
Atomic Writes can increase the life of
flash media up to 2x due to reduction
in write-ahead-logging and double-
write buffering.

▸  50% less code in key modules
Atomic operations dramatically reduce
application logic, such as journaling,
built as work-arounds.

PDSW 8 – Supercomputing 13

ATOMIC WRITES – MYSQL EXAMPLE

20

Traditional MySQL Writes MySQL with Atomic Writes

Page
C Page

B

Page
A

Buffer

DRAM
Buffer

SSD (or HDD) Database

Database
Server

Page
C

Page
B

Page
A

Page
C

Page
B

Page
A

Page
C

Page
B

Page
A

Application
initiates updates
to pages A, B,
and C.

1

MySQL copies
updated pages to
memory buffer.

2

MySQL writes
to double-write
buffer on the
media.

3

Once step 3 is
acknowledged,
MySQL writes
the updates to
the actual
tablespace.

4

ioMemory Database

Page
C

Page
B

Page
A

DRAM
Buffer

Page
C

Page
B

Page
A

Application
initiates updates
to pages A, B,
and C.

1

MySQL copies
updated pages to
memory buffer.

2

MySQL writes to
actual tablespace,
bypassing the
double-write buffer
step due to
inherent atomicity
guaranteed by the
(intelligent) device.

3

Database
Server

Page
C Page

B

Page
A

PDSW 8 – Supercomputing 13

2-4x Latency Improvement on Percona Server

MYSQL EXAMPLE: LATENCY IMPROVEMENT

0

20

40

60

80

100

120

140

160

180

200

1
10

7
21

3
31

9
42

5
53

1
63

7
74

3
84

9
95

5
10

61

11
67

12

73

13
79

14

85

15
91

16

97

18
03

19

09

20
15

21

21

22
27

23

33

24
39

25

45

26
51

27

57

28
63

29

69

30
75

31

81

32
87

33

93

34
99

M
ill

is
ec

on
ds

Seconds

Sysbench 99% Latency
OLTP workload

XFS DoubleWrite
DirectFS Atomic Atomic Writes

PDSW 8 – Supercomputing 13

70% Transactions/sec Improvement on MariaDB Server

MYSQL EXAMPLE: THROUGHPUT IMPROVEMENT

0

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e
18

0
36

0
54

0
72

0
90

0
10

80

12
60

14

40

16
20

18

00

19
80

21

60

23
40

25

20

27
00

28

80

30
60

32

40

34
20

36

00

37
80

39

60

41
40

43

20

45
00

46

80

48
60

50

40

52
20

54

00

55
80

57

60

59
40

61

20

63
00

64

80

66
60

68

40

70
20

N
ew

O
rd

er
TX

N

10
se

c

Seconds

XtraDB 5.5.30 - Atomics
TPC-C - 2500 warehouses

230GB data - 50GB buffer pool

DirectFS/Atomic
Ext4 No-DoubleWrite
Ext4 DoubleWrite

Atomic Writes

PDSW 8 – Supercomputing 13

KEY-VALUE INTERFACE: SAMPLE USES AND
BENEFITS

23

NoSQL Applications
Increase performance by eliminating
packing and unpacking blocks,
defragmentation, and duplicate
metadata at app layer.

Reduce application I/O through
batched operations.

Reduce overprovisioning due to lack of
coordination between two-layers of
garbage collection (application-layer
and flash-layer). Some top NoSQL
applications recommend over-
provisioning by 3x due to this.

▸  Near performance of raw device
Smarter media now natively understands a
key-value I/O interface with lock-free
updates, crash recovery, and no additional
metadata overhead.

▸  3x throughput on same SSD
Early benchmarks comparing against
synchronous levelDB show over 3x
improvement.

▸  Up to 3x capacity increase
Dramatically reduces over-provisioning
through coordinated garbage collection and
automated key expiry.

PDSW 8 – Supercomputing 13

KEY-VALUE INTERFACE - PERFORMANCE

24

Key-Value get/put vs. Raw read/write vs. levelDB read/write

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 4 8 16

O
ps

/s

Threads

GET/READ Performance

Leveldb-sync

NVMKV

Raw device

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 2 4 8 16

O
ps

/s

Threads

PUT/WRITE Performance

Leveldb-sync

NVMKV

FIO

PDSW 8 – Supercomputing 13

MEMORY-ACCESS THROUGH NATIVE
INTERFACES

25

APPLICATION

Application source code

Extended (Volatile)
Memory

Persistent
Memory Transactional

Block Native File Key-Value
Object

Simple
Block

Network
File

Simple
Block

Proprietary Storage OS

Non Volatile Memory Media

Native Flash Translation Layer

Storage Media

Conventional I/O access

Memory access

Direct access I/O

PDSW 8 – Supercomputing 13

GRAPH500* AND DI-MMAP**

•  Traversing massive graphs
•  "Using 2.56TB of Fusion-io NAND flash to access data using memory

semantics, LLNL's new Graph500 algorithm can process graphs 8x larger
than before with only a 50% performance degradation compared to an all
DRAM system.”

•  Results: 55.6 MTEPS (Million Traversed Edges Per Second)
 4 x 640GB Fusion-io MLC

•  DI-MMAP: Accelerated mmap for highly concurrent apps
•  3-5x improvement in mmap performance

* Graph500: Traversing massive graphs with NAND flash;
Pearce, Gokhale, & Amato (LLNL)
**DI-MMAP: A High Performance Memory Map Runtime for Data
Intensive Applications; Van Essen, Hsieh, Ames, Gokhale (LLNL)

PDSW 8 – Supercomputing 13

IMPROVING LINUX SWAP (DEMAND-PAGING)

27

Originally designed as a last resort to prevent OOM (out-of-memory) failures
•  Never tuned for high-performance demand-paging
•  Never tuned for multi-threaded apps
•  Poor performance

Tuned for flash (leverages native characteristics)
▸  O(1) algorithm for swap_out – reduce algorithm time and leverage fast random I/O
▸  Per CPU reclaim – greater throughput for multi-threaded environments
▸  Intelligent read-ahead on swap-in – cut legacy, disk-era cruft for rotational latency

Disks

System Memory

Default Swap

ioMemory/Flash

System Memory

Optimized Swap

PDSW 8 – Supercomputing 13

FAST SWAP - PERFORMANCE

0

500000

1000000

1500000

2000000

2500000

0 100 200 300 400 500 600 700 800

M
em

or
y

O
ps

/s

Time

Default OS-Swap

Improved OS-Swap

~2x improvement in page-out rate

~3.5x improvement in page-in and out rate

~3x reduction in load completion time

3x reduction in load completion time with fast swap

PDSW 8 – Supercomputing 13

COMPARING I/O AND MEMORY ACCESS
SEMANTICS

November 18, 2013 29

I/O
I/O semantics examples:

•  Open file descriptor – open(), read(), write(), seek(), close()
•  (New) Write multiple data blocks atomically, nvm_vectored_write()
•  (New) Open key-value store – nvm_kv_open(), kv_put(), kv_get(), kv_batch_*()

Memory
Access
(Volatile)

Volatile memory semantics example:
•  Allocate virtual memory, e.g. malloc()
•  memcpy/pointer dereference writes (or reads) to memory address
•  (Improved) Page-faulting transparently loads data from NVM into memory

Memory
Access

(Non-
Volatile)

Non-volatile memory semantics example:
•  (New) Allocate and manage persistent memory

PDSW 8 – Supercomputing 13

30

https://opennvm.github.io

http://www.opencompute.org/projects/storage/

PDSW 8 – Supercomputing 13

1ST CONTRIBUTION: FLASH PRIMITIVES

31
https://opennvm.github.io

On GitHub:

•  API specifications, such as:

•  nvm_atomic_write()
•  nvm_batch_atomic_operations()
•  nvm_atomic_trim()

•  Sample program code

PDSW 8 – Supercomputing 13

2ND CONTRIBUTION: LINUX FAST-SWAP

32
https://opennvm.github.io

On GitHub:

•  Documentation

•  Experimental Linux kernel with

virtual memory swap patch
(3.6 kernel)

•  Benchmarking utility

PDSW 8 – Supercomputing 13

3RD CONTRIBUTION: KEY-VALUE INTERFACE

33
https://opennvm.github.io

On GitHub:

•  API specifications, such as:

nvm_kv_put()
•  nvm_kv_get()
•  nvm_kev_batch_put()
•  nvm_kv_set_global_expiry()

•  Sample program code

•  Benchmarking utility

•  Source code for flash optimized
key value store

PDSW 8 – Supercomputing 13

APPS USING OPENNVM TECHNOLOGY

November 18, 2013 34
https://opennvm.github.io

PDSW 8 – Supercomputing 13

OPENNVM, STANDARDS, AND
CONSORTIUMS

November 16, 2013 35

▸  opennvm.github.io

•  Primitives API specifications, sample code

•  Linux swap kernel patch and benchmarking tools

•  key-value interface API library and code, sample usage code, benchmark
tools

▸  INCITS SCSI (T10) active standards proposals:

•  SBC-4 SPC-5 Atomic-Write
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf

•  SBC-4 SPC-5 Scattered writes, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf

•  SBC-4 SPC-5 Gathered reads, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

▸  SNIA NVM-Programming TWG draft guide: http://snia.org/forums/sssi/nvmp

JOIN US AT OPENNVM.GITHUB.IO

36 PDSW 8 – Supercomputing 13

T H A N K Y O U

