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FLASH IN THE DATACENTER 
Nisha Talagala 



NON VOLATILE MEMORY 

Flash 
▸  100s GB to 10 TB per  

PCIe device 
▸  Media trend – increase  

in density, reduction of write cycles, 
SLC/MLC/3BPC 

▸  100s of thousands to millions of IOPS, 
GB/s of bandwidth 

PCM/MRAM/STT/Other NVMs 
▸  Still in research 
▸  Potential of extreme performance 

increase 
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HOW TO EFFECTIVELY USE FLASH? 

Performance 
▸  Closer to CPU  – highest bandwidth, lowest latency 
▸  Server (compute) side flash complements storage side flash 

Hierarchy of DRAM, flash, disk 
Disk displacement usages 

▸  Caches – server and storage side 
▸  Scale out and cluster file systems 

•  flash in metadata server 
•  storage server 

▸  Staging, checkpoint 

DRAM displacement usages 
▸  Improved paging, semi-external memory  
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NVM IN THE DATA CENTER TODAY 
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EVOLUTION OF ENTERPRISE FLASH 

FLASH AS DISK 

Application 

Application source code converts  
native data structures into block I/O 

Conventional I/O Access 

Block I/O 

NVM Devices/Media 
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SC11 GENERAL PARALLEL FILE 
SYSTEM (GPFS) DEMO 
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▸  24 uncompressed 1080p videos (up to 6 GB/s of data) 
▸  Five Fusion Powered GPFS-based NSD servers 
▸  Three visualization workstations 
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DEMO SOFTWARE SPECS 
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▸  RedHat Enterprise Linux 6.1 - InfiniBand Software Stack 
▸  IBM GPFS (General Parallel File System) 3.4.0.8 
▸  NVIDIA Linux Driver 
▸  Fusion-io VSL 3 
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DEMO HARDWARE SPECS 
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▸  Five 0.5U NSD Servers, each with six core dual socket CPUs,
12 GB RAM, InfiniBand HCA, and an ioDrive2 

▸  3 Visualization workstations, with an InfiniBand HCA and an  
NVIDIA graphics card 

▸  36-port QDR InfiniBand switch 
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+ 
Software 

Your Server 
Becomes a Shared  
Flash Storage 
Appliance 



ION DATA ACCELERATOR – HIGH AVAILABILITY 
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LUN 0 LUN 0 

LUN 1 LUN 1 

LUN 0 LUN 1 

40Gb 
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ION – FREEDOM OF CHOICE 

SOFTWARE 

Leverage your buying power 

FULLY INTEGRATED SOLUTION 

▸  Leverage your buying power 
▸  Integrate 
▸  Support 

•  ION Software (via Fusion-io) 
•  Server (via server OEM) 
•  ioDrive (via your supplier) 

 

▸  No hassles, partner integrated 
▸  Support 

•  End-to-End Fusion-io Support 
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EVOLUTION OF ENTERPRISE FLASH 
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Area Hard Disk Drives Flash Devices 

Logical to Physical 
Blocks 

Nearly 1:1 Mapping Remapped at every write 

Read/Write 
Performance 

Largely symmetrical Heavily asymmetrical. 
Additional operation 
(erase) 

Sequential vs Random 
Performance 

100x difference. Elevator 
scheduling for disk arm 

<10x difference. No disk 
arm – NAND die  

Background operations  Rarely impact foreground Regular occurrence. If 
unmanaged - can impact 
foreground  

Wear out Largely unlimited writes Limited writes 

IOPS 100s to 1000s 100Ks to Millions 

Latency 10s ms 10s-100s us 

NVM (FLASH, OTHER)  IS DIFFERENT FROM DISK 
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CONVENTIONAL I/O ACCESS 
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MULTI-QUEUE I/O IN LINUX* 

•  Extending Linux block I/O to support NVM performance 
•  Multi-queue  

•  Software queues, Hardware queues 
•  Per CPU issue/completion, multi-socket scaling 
•  Matches inherent parallelism in NVM devices and CPUs 
•  Supports upcoming queue oriented standards models  

•  Performance  
•   3.5x – 10x increase in IOPS (from ~1M to 3.5-10M)  
•  10x – 38x reduction in I/O stack latency 

*Linux Block I/O: Introducing Multiqueue SSD Access on Multicore Systems 
 Bjorling M., Axboe J., Nellans D., Bonnett P.  
 SYSTOR 2013 
University of Copenhagen and Fusion-io 
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DIRECT-ACCESS I/O THROUGH NATIVE 
INTERFACES 
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FLASH PRIMITIVES: SAMPLE USES AND BENEFITS 
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Databases 
Transactional Atomicity: 
Replace various workarounds 
implemented in database code to 
provide write atomicity (MySQL 
double-buffered writes, etc.)  
 

Filesystems 
File Update Atomicity: 
Replace various workarounds 
implemented in filesystem code to 
provide file/directory update 
atomicity (journaling, etc.) 

 

▸  98% performance of raw writes 
Smarter media now natively 
understands atomic updates, with no 
additional metadata overhead. 
 

▸  2x longer flash media life  
Atomic Writes can increase the life of 
flash media up to 2x due to reduction 
in write-ahead-logging and double-
write buffering. 
 

▸  50% less code in key modules 
Atomic operations dramatically reduce 
application logic, such as journaling, 
built as work-arounds. 
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ATOMIC WRITES – MYSQL EXAMPLE 
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Traditional MySQL Writes MySQL with Atomic Writes 
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2-4x Latency Improvement on Percona Server 

MYSQL EXAMPLE: LATENCY IMPROVEMENT 
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70% Transactions/sec Improvement on MariaDB Server 

MYSQL EXAMPLE: THROUGHPUT IMPROVEMENT 
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KEY-VALUE INTERFACE: SAMPLE USES AND 
BENEFITS 

23 

NoSQL Applications 
Increase performance by eliminating 
packing and unpacking blocks, 
defragmentation, and duplicate 
metadata at app layer. 
 
Reduce application I/O through 
batched operations. 
 
Reduce overprovisioning due to lack of 
coordination between two-layers of 
garbage collection (application-layer 
and flash-layer).  Some top NoSQL 
applications recommend over-
provisioning by 3x due to this. 
 

 

▸  Near performance of raw device 
Smarter media now natively understands a 
key-value I/O interface with lock-free 
updates, crash recovery, and no additional 
metadata overhead. 

▸  3x throughput on same SSD 
Early benchmarks comparing against 
synchronous levelDB show over 3x 
improvement. 

▸  Up to 3x capacity increase 
Dramatically reduces over-provisioning 
through coordinated garbage collection and 
automated key expiry. 
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KEY-VALUE INTERFACE - PERFORMANCE 
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Key-Value get/put vs. Raw read/write vs. levelDB read/write 
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MEMORY-ACCESS THROUGH NATIVE 
INTERFACES 
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GRAPH500* AND DI-MMAP** 

•  Traversing massive graphs 
•  "Using 2.56TB of Fusion-io NAND flash to access data using memory 

semantics, LLNL's new Graph500 algorithm can process graphs 8x larger 
than before with only a 50% performance degradation compared to an all 
DRAM system.” 

•  Results: 55.6 MTEPS (Million Traversed Edges Per Second) 
  4 x 640GB Fusion-io MLC 

•  DI-MMAP: Accelerated mmap for highly concurrent apps 
•  3-5x improvement in mmap performance 

 
* Graph500: Traversing massive graphs with NAND flash;  
Pearce, Gokhale, & Amato (LLNL) 
**DI-MMAP: A High Performance Memory Map Runtime for Data 
Intensive Applications; Van Essen, Hsieh, Ames, Gokhale (LLNL) 
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IMPROVING LINUX SWAP (DEMAND-PAGING) 
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Originally designed as a last resort to prevent OOM (out-of-memory) failures 
•  Never tuned for high-performance demand-paging 
•  Never tuned for multi-threaded apps 
•  Poor performance 

 
 
 
 
 
Tuned for flash (leverages native characteristics) 
▸  O(1) algorithm for swap_out – reduce algorithm time and leverage fast random I/O 
▸  Per CPU reclaim – greater throughput for multi-threaded environments 
▸  Intelligent read-ahead on swap-in – cut legacy, disk-era cruft for rotational latency 
 

Disks 

 
 
System Memory 
 
 

Default Swap 

ioMemory/Flash 

 
 
System Memory 
 
 

Optimized Swap 
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FAST SWAP - PERFORMANCE 
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COMPARING I/O AND MEMORY ACCESS 
SEMANTICS 

November 18, 2013 29 

I/O 
I/O semantics examples: 

•  Open file descriptor – open(), read(), write(), seek(), close() 
•  (New) Write multiple data blocks atomically, nvm_vectored_write()  
•  (New) Open key-value store – nvm_kv_open(), kv_put(), kv_get(), kv_batch_*() 

Memory 
Access 
(Volatile) 

Volatile memory semantics example: 
•  Allocate virtual memory, e.g. malloc() 
•  memcpy/pointer dereference writes (or reads) to memory address 
•  (Improved) Page-faulting transparently loads data from NVM into memory 

Memory 
Access 

(Non-
Volatile) 

Non-volatile memory semantics example: 
•  (New) Allocate and manage persistent memory  
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https://opennvm.github.io 

http://www.opencompute.org/projects/storage/ 

PDSW 8 – Supercomputing 13 



1ST CONTRIBUTION: FLASH PRIMITIVES 

31 
https://opennvm.github.io 

On GitHub: 
 
•  API specifications, such as: 

•  nvm_atomic_write()  
•  nvm_batch_atomic_operations()  
•  nvm_atomic_trim() 

 
•  Sample program code 
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2ND CONTRIBUTION: LINUX FAST-SWAP 

32 
https://opennvm.github.io 

On GitHub: 
 
•  Documentation 

 
•  Experimental Linux kernel with  

virtual memory swap patch 
(3.6 kernel) 
 

•  Benchmarking utility 
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3RD CONTRIBUTION: KEY-VALUE INTERFACE 

33 
https://opennvm.github.io 

On GitHub: 
 
•  API specifications, such as: 

nvm_kv_put() 
•  nvm_kv_get() 
•  nvm_kev_batch_put() 
•  nvm_kv_set_global_expiry() 

•  Sample program code 
 

•  Benchmarking utility 
 

•  Source code for flash optimized 
key value store 
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APPS USING OPENNVM TECHNOLOGY 

November 18, 2013 34 
https://opennvm.github.io 
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OPENNVM, STANDARDS, AND 
CONSORTIUMS 

November 16, 2013 35 

▸  opennvm.github.io 

•  Primitives API specifications, sample code 

•  Linux swap kernel patch and benchmarking tools 

•  key-value interface API library and code, sample usage code, benchmark 
tools 

▸  INCITS SCSI (T10) active standards proposals: 

•  SBC-4 SPC-5 Atomic-Write 
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf 

•  SBC-4 SPC-5 Scattered writes, optionally atomic 
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf 

•  SBC-4 SPC-5 Gathered reads, optionally atomic 
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf  

▸  SNIA NVM-Programming TWG draft guide: http://snia.org/forums/sssi/nvmp  



JOIN US AT OPENNVM.GITHUB.IO 
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T H A N K  Y O U  


