FUSION-iO/

/ Y

FLASH IN THE DATACENTER
Nisha Talagala

Copyright © Fusion-io, Inc. All rights reserved.

o
IA" NON VOLATILE MEMORY FUSiON-iO

Flash

100s GB to 10 TB per

PCle device

Media trend — increase

in density, reduction of write cycles,
SLC/MLC/3BPC

100s of thousands to millions of IOPS,
GB/s of bandwidth

PCM/MRAM/STT/Other NVMs
Still in research

Potential of extreme performance
increase

PDSW 8 — Supercomputing 13 :

HOW TO EFFECTIVELY USE FLASH? FUSION-iO

Performance

Closer to CPU — highest bandwidth, lowest latency
Server (compute) side flash complements storage side flash

Hierarchy of DRAM, flash, disk

Disk displacement usages

Caches — server and storage side

Scale out and cluster file systems
flash in metadata server
storage server

Staging, checkpoint

DRAM displacement usages
Improved paging, semi-external memory

PDSW 8 — Supercomputing 13

5}4.' NVM IN THE DATA CENTER TODAY

Web

front
Ends

tiers

- —

and application
tiers

Storage

DRAM, flash
and disk

PDSW 8 — Supercomputing 13

FUSION-IiO’

DRAM and
Flash

DRAM, flash
and disk

%

Performance

MEMORY STORAGE CONVERGENCE

DRAM

Volatile Memory

Flash and
Other NVMs

Volatile-Storage

Non-Volatile Memory

Flash and
Other NVMs

Non-Volatile Storage

Disk, Tape

FUSION-IiO’

Persistence

PDSW 8 — Supercomputing 13

o
IA" EVOLUTION OF ENTERPRISE FLASH FUSION-iO

FLASH AS DISK FLASH BEYOND DISK FLASH AS MEMORY

s |

Application Application Application

Application source code
manipulates native memory data
structures

Application source code converts Application source code does
native data structures into block I/O I/O with native data structures

Conventional 1/0 Access Enhanced I/O Memory Access

Atomic I/0 Native Key-Value .
Block 1/0 Transaction Transaction Extended Memory Persistent Memory

NVM Devices/Media NVM Devices/Media NVM Devices/Media

PDSW 8 — Supercomputing 13

%

EVOLUTION OF ENTERPRISE FLASH

FLASH AS DISK

Application

Application source code converts
native data structures into block 1/0

Conventional 1/0 Access

Block 1/0

NVM Devices/Media

FUSION-IiO’

Application

Application source code does
I/O with native data structures

Application

Application source code
manipulates native memory data
structures

PDSW 8 — Supercomputing 13

.
K SC11 GENERAL PARALLEL FILE e
SYSTEM (GPFS) DEMO

24 uncompressed 1080p videos (up to 6 GB/s of data)
Five Fusion Powered GPFS-based NSD servers
Three visualization workstations

PDSW 8 — Supercomputing 13 ¢

o
IA" DEMO SOFTWARE SPECS

NSD SERVER

DETAIL

RedHat Enterprise Linux 6.1

IBM GPFS (General Parallel File System)

| Management | | Data |

| InfiniBand IPolB || InfiniBand Verbs || Fusion-iovsL |

T

|
Mellanox HCA % @ ioDrive2
1

InfiniBand Switch

FUSION-IiO’

RedHat Enterprise Linux 6.1 - InfiniBand Software Stack
IBM GPFS (General Parallel File System) 3.4.0.8
NVIDIA Linux Driver

Fusion-io VSL 3

PDSW 8 — Supercomputing 13

DEMO HARDWARE SPECS FUSiON-iO

0.5U GPFS NSD SERVERS

ioDrive2

IBM GPFS (GENERAL PARALLEL FILE SYSTEM)
CONNECTED VIA NATIVE INFINIBAND

GPFS CLIENTS VISUALIZATION WORKSTATIONS

GRAPHICS CARDS

| DISPLAY |

Five 0.5U NSD Servers, each with six core dual socket CPUs,
12 GB RAM, InfiniBand HCA, and an ioDrive2

3 Visualization workstations, with an InfiniBand HCA and an
NVIDIA graphics card

36-port QDR InfiniBand switch

PDSW 8 — Supercomputing 13

10

10N

Software

Your Server
Becomes a Shared
Flash Storage
Appliance

%

ION DATA ACCELERATOR - HIGH AVAILABILITY

LUN O

LUN 1

LUNO

<—-—-m

PDSW 8 — Supercomputing 13

FUSION-IiO’

12

%

O

3;4' FUSION-iO

Leverage your buying power

Integrate

Support
ION Software (via Fusion-io)
Server (via server OEM)
ioDrive (via your supplier)

ION — FREEDOM OF CHOICE

CISCO

FUSION-IiO’

SOFTWARE FULLY INTEGRATED SOLUTION

No hassles, partner integrated
Support
End-to-End Fusion-io Support

PDSW 8 — Supercomputing 13 "~

%

EVOLUTION OF ENTERPRISE FLASH

Application

Application source code converts
native data structures into block I/O

FLASH BEYOND DISK

Application

Application source code does
I/O with native data structures

Enhanced I/O

Atomic I/0 Native
Transaction primitives

Key-Value
Transaction

NVM Devices/Media

FUSION-IiO’

Application

Application source code
manipulates native memory data
structures

PDSW 8 — Supercomputing 13

o
IA" NVM (FLASH, OTHER) IS DIFFERENT FROM DISK

FUSION

_ Hard Disk Drives Flash Devices

Logical to Physical
Blocks

Read/Write
Performance

Sequential vs Random
Performance

Background operations

Wear out
IOPS

Latency

Nearly 1:1 Mapping

Largely symmetrical

100x difference. Elevator
scheduling for disk arm

Rarely impact foreground

Largely unlimited writes
100s to 1000s

10s ms

Remapped at every write

Heavily asymmetrical.
Additional operation
(erase)

<10x difference. No disk
arm — NAND die

Regular occurrence. If
unmanaged - can impact
foreground

Limited writes
100Ks to Millions
10s-100s us

PDSW 8 — Supercomputing 13

by
/A‘. CONVENTIONAL I/O ACCESS FUSiON-iO

APPLICATION

Application source code

o——— Conventional /O access ————

Simple Network Simple
Block File (=] [oTed ¢

Proprietary Storage OS Native Flash Translation Layer

Storage Media Non Volatile Memory Media

PDSW 8 — Supercomputing 13 °

o
'A" MULTI-QUEUE 1/O IN LINUX* FUSiON-iO

« Extending Linux block I/O to support NVM performance

* Multi-queue
Software queues, Hardware queues
Per CPU issue/completion, multi-socket scaling
Matches inherent parallelism in NVM devices and CPUs
Supports upcoming queue oriented standards models

« Performance
3.5x — 10x increase in IOPS (from ~1M to 3.5-10M)

10x — 38x reduction in 1/O stack latency

*Linux Block 1/O: Introducing Multiqueue SSD Access on Multicore Systems
Bjorling M., Axboe J., Nellans D., Bonnett P.

SYSTOR 2013

University of Copenhagen and Fusion-io

PDSW 8 — Supercomputing 13

)y
IA" DIRECT-ACCESS I/O THROUGH NATIVE FUSiON-iO
INTERFACES

APPLICATION
Application source code
¢———— Directaccess /O —=

o——— Conventional /O access ————

Simple Network Simple
Block File Block

Proprietary Storage OS Native Flash Translation Layer

Transactional |Native| Key-Value

Storage Media Non Volatile Memory Media

o ST

PDSW 8 — Supercomputing 13 '

T
44" FLASH PRIMITIVES: SAMPLE USES AND BENEFITS FUSION-iO

Databases

Transactional Atomicity:

Replace various workarounds
implemented in database code to
provide write atomicity (MySQL
double-buffered writes, etc.)

Filesystems

File Update Atomicity:

Replace various workarounds
implemented in filesystem code to
provide file/directory update
atomicity (journaling, etc.)

98% performance of raw writes
Smarter media now natively
understands atomic updates, with no
additional metadata overhead.

2x longer flash media life

Atomic Writes can increase the life of
flash media up to 2x due to reduction
in write-ahead-logging and double-

write buffering.

90% less code in key modules
Atomic operations dramatically reduce
application logic, such as journaling,
built as work-arounds.

PDSW 8 — Supercomputing 13 "

ATOMIC WRITES - MYSQL EXAMPLE

Traditional MySQL Writes

Page Page Page
A B Cc

Database
Server

DRAM [Page [Page|Page
Buffer [TAT B C

Page Page Page Page
A B C A
S [Page
Pagefj C
B
°

SSD (or HDD)

Database

Application
initiates updates
to pages A, B,
and C.

MySQL copies
updated pages to
memory buffer.

MySQL writes
to double-write
buffer on the
media.

Once step 3 is
acknowledged,
MySQL writes
the updates to
the actual
tablespace.

FUSION-IiO’

MySQL with Atomic Writes

Page Page Page

A] C
Database
Server
2
DRAM [Page PagePage
Buffer [NANE
3

ioMemory Database

PDSW 8 — Supercomputing 13

Application
initiates updates
to pages A, B,
and C.

MySQL copies
updated pages to
memory buffer.

MySQL writes to
actual tablespace,
bypassing the
double-write buffer
step due to
inherent atomicity
guaranteed by the
(intelligent) device.

%

MYSQL EXAMPLE: LATENCY IMPROVEMENT FeeElS

2-4x Latency Improvement on Percona Server

ds

c

CcoO

(1]

Millis

200
180
160
140
120
100

80

60 -
40 -
20 -

Sysbench 99% Latency
OLTP workload

| | I Ll g | — XFS DoubleWrite

WLl L e Jl nilw ulll — Atomic Writes

Seconds

PDSW 8 — Supercomputing 13

%

MYSQL EXAMPLE: THROUGHPUT IMPROVEMENT “-=s'one

70% Transactions/sec Improvement on MariaDB Server

NewOrderTXN
10sec

16000

14000

XtraDB 5.5.30 - Atomics
TPC-C - 2500 warehouses
230GB data - 50GB buffer pool

12000 |

10000

8000
6000
4000

2000

—— Atomic Writes

— Ext4 No-DoubleWrite
Ext4 DoubleWrite

Seconds

PDSW 8 — Supercomputing 13

.
44' KEY-VALUE INTERFACE: SAMPLE USES AND FUSION-IO

BENEFITS
NoSQL Applications Near performance of raw device
. Smarter media now natively understands a
Incre_ase performanc?e by eliminating key-value I/O interface with lock-free
packing and unpacking blocks, updates, crash recovery, and no additional
defragmentation, and duplicate metadata overhead.

metadata at app layer.

3x throughput on same SSD

Reduce application 1/O through Early benchmarks comparing against
batched operations. synchronous levelDB show over 3x
improvement.

Reduce overprovisioning due to lack of

coordination between two-layers of Up to 3x capacity increase
garbage collection (application-layer Dramatically reduces over-provisioning
and flash-layer). Some top NoSQL through coordinated garbage collection and
applications recommend over- automated key expiry.

provisioning by 3x due to this.

PDSW 8 — Supercomputing 13 2

.
X KEY-VALUE INTERFACE - PERFORMANCE g

Key-Value get/put vs. Raw read/write vs. levelDB read/write

GET/READ Performance PUT/WRITE Performance
160000 450000
140000 400000
120000 350000
300000
100000
) © 250000
8 80000 e cveldb-sync § === eveldb-sync
o O 200000
DN VMKV e NV MKV
60000
l _ 150000 1
Raw device FIO
40000 100000
_
20000 w 50000 r; ; c M
0 0 v
1 2 4 8 16 1 2 4 8 16
Threads Threads

PDSW 8 — Supercomputing 13

MEMORY-ACCESS THROUGH NATIVE FUSiON-iO

INTERFACES

APPLICATION

Application source code e~ Memoryaccess —
¢———— Directaccess /O —=

o——— Conventional /O access ————

Extended (Volatile) Persistent

Transactional Native File Key-Value Memory Memory
Block Object
Simple Network Simple
Block File Block
Proprietary Storage OS Native Flash Translation Layer
Storage Media Non Volatile Memory Media

PDSW 8 — Supercomputing 13

25

Y& GRAPH500* AND DI-MMAP** T —
 Traversing massive graphs

"Using 2.56TB of Fusion-io NAND flash to access data using memory

semantics, LLNL's new Graph500 algorithm can process graphs 8x larger

than before with only a 50% performance degradation compared to an all
DRAM system.”

Results: 55.6 MTEPS (Million Traversed Edges Per Second)
4 x 640GB Fusion-io MLC

DI-MMAP: Accelerated mmap for highly concurrent apps
3-5x improvement in mmap performance

sl

* Graph500: Traversing massive graphs with NAND flash; GR
Pearce, Gokhale, & Amato (LLNL)

**DI-MMAP: A High Performance Memory Map Runtime for Data
Intensive Applications; Van Essen, Hsieh, Ames, Gokhale (LLNL)

PDSW 8 — Supercomputing 13

o
44' IMPROVING LINUX SWAP (DEMAND-PAGING)

FUSION-IiO’

Originally designed as a last resort to prevent OOM (out-of-memory) failures
» Never tuned for high-performance demand-paging

* Never tuned for multi-threaded apps

» Poor performance

System Memory ioMemory/Flash

Tuned for flash (leverages native characteristics)

» O(1) algorithm for swap_out — reduce algorithm time and leverage fast random I/O
Per CPU reclaim — greater throughput for multi-threaded environments

Intelligent read-ahead on swap-in — cut legacy, disk-era cruft for rotational latency

>

>

PDSW 8 — Supercomputing 13

o
/A' FAST SWAP - PERFORMANCE FUSiON-iO

3x reduction in load completion time with fast swap

2500000 | : .
~2x improvement in page-out rate

2000000 : : .
~3.5x improvement in page-in and out rate

n

?

& 1500000 >

o

o e Default OS-Swap

g 1000000 -

s e===|mproved OS-Swap

500000 . L
~3x reduction in load completion time

0 100 200 300 400 500 600 700 800
Time

PDSW 8 — Supercomputing 13

COMPARING I/O0 AND MEMORY ACCESS
SEMANTICS

FUSION-IiO’

I/O semantics examples:
+ Open file descriptor — open(), read(), write(), seek(), close()
* (New) Write multiple data blocks atomically, nvm_vectored_write()
* (New) Open key-value store — nvm_kv_open(), kv_put(), kv_get(), kv_batch_*()

Volatile memory semantics example:
Memory + Allocate virtual memory, e.g. malloc()
ACCG_SS * memcpy/pointer dereference writes (or reads) to memory address
(Volatile) - (Improved) Page-faulting transparently loads data from NVM into memory

Memory

Access Non-volatile memory semantics example:
(Non- * (New) Allocate and manage persistent memory
Volatile)

PR3V 8 2Supercomputing 13 2

FUSION-IiO’

https://opennvm.github.10

OpenNVM

Welcome to the open source project for creating new interfaces for
non-volatile memory (like Fash).

http://[www.opencompute.org/projects/storage/

PDSW 8 — Supercomputing 13 20

o
44“' 1ST CONTRIBUTION: FLASH PRIMITIVES FUSION-iO

On GitHub:

» API specifications, such as:

* nvm_atomic_write()

* nvm_batch_atomic_operations()
Flash programming primitives * nvm_atomic_trim()

Use built-in characteristics of the Flash Translation Layer o Sample program code
to perfrom journal-less updates (more performance and

less flash wear = lower TCQO)

2SIl Learn More

https://opennvm.github.10

PDSW 8 — Supercomputing 13 ¥

%

2ND CONTRIBUTION: LINUX FAST-SWAP

Flash-aware Linux swap

When working set size exceeds the capacity of DRAM,
demand page from a flash-aware virtual memory
subsystem.

2E I Learn More

https://opennvm.github.10

On GitHub:

« Documentation

« Experimental Linux kernel with
virtual memory swap patch

(3.6 kernel)

« Benchmarking utility

PDSW 8 — Supercomputing 13

FUSION-IiO’

32

3RD CONTRIBUTION: KEY-VALUE INTERFACE

) S

Key-value interface to flash

Create NoSQL databases faster. Automate garbage
collection of expired data.

zES 100 Learn More

https://opennvm.github.10

FUSION-IiO’

On GitHub:

API specifications, such as:
nvm_kv_put()
nvm_kv_get()
nvm_kev_batch_put()
nvm_kv_set_global expiry()

Sample program code

Benchmarking utility

Source code for flash optimized
key value store

PDSW 8 — Supercomputing 13 0

%

APPS USING OPENNVM TECHNOLOGY FUSiON-iO

SERVER

M%OHODB @ PERCONA

Learn More » Learn More »

https://opennvm.github.10

PR3V 8 2Supercomputing 13 34

.
K OPENNVM, STANDARDS, AND FUSION-O
CONSORTIUMS

opennvm.github.io
Primitives API specifications, sample code
Linux swap kernel patch and benchmarking tools

key-value interface API library and code, sample usage code, benchmark
tools

INCITS SCSI (T10) active standards proposals:

SBC-4 SPC-5 Atomic-Write
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf

SBC-4 SPC-5 Scattered writes, optionally atomic
http://www.t10.org/cqi-bin/ac.pl?t=d&f=12-086r3.pdf

SBC-4 SPC-5 Gathered reads, optionally atomic
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

SNIA NVM-Programming TWG draft guide: http://snia.org/forums/sssi/nvmp

JOIN US AT OPENNVM.GITHUB.IO

FUSION-IiO’

Current OpenNVM Repositories

2y

Flash-aware Linux swap Key-value interface to fFlash
When working set size exceeds the capacity of DRAM, Create NoSQL databases faster. Automate garbage
demand page from a flash-aware virtual memory collection of expired data.

subsystem.
FEEICAN Learn More
FE eIl Learn More

4

Flash programming primitives

Use built-in characteristics of the Flash Translation Layer
to perfrom journal-less updates (more performance and
less flash wear = lower TCO)

&SIl Learn More

PDSW 8 — Supercomputing 13 %

THANK YOU

