
Performance Improvement of Gfarm Using InfiniBand RDMA
Shin Sasaki† Ryo Matsumiya† Kazushi Takahashi†‡ Yoshihiro Oyama†‡

†The University of Electro-Communications, ‡JST, CREST
{sasashin, r.matsumiya, kazushi, oyama}@ol.inf.uec.ac.jp

In the field of HPC, distributed file systems are widely used to
store input-output data processed by applications. The performance
of distributed file systems have significant impact on applications, and
their performance improvement is in great demand. In this on-going
work, we focus on InfiniBand, an interconnect widely used in the
field of HPC, and propose a method that achieves high-throughput
data transfer between client nodes and I/O servers. In the proposed
method, data are transferred into page caches of client nodes by
using InfiniBand remote direct memory access (RDMA). Our target
distributed file system is Gfarm [1].

Gfarm [1] is a distributed file system designed for data sharing
among multiple nodes and data-intensive computing. Gfarm consists
of a single meta data server that manages file meta data, and multiple
I/O servers that store data in their local file systems. Gfarm library is
provided to access to data on Gfarm. In general, we mount Gfarm in
user space with gfarm2fs, a FUSE-based [2] utility program. Figure
1 (a) describes the path of data read/write when using gfarm2fs. While
gfarm2fs is a user-friendly and sophisticated program, it can cause
performance degradation due to an overhead of context switches
caused by FUSE.

To reduce this overhead, we have developed a loadable kernel
module (Gfarm LKM) that mounts Gfarm in kernel space. We load
the LKM and mount Gfarm using mount command. Figure 1 (b)
describes the path of data read/write when using Gfarm LKM.
Although the LKM reduces an overhead related to FUSE, data are
still copied from an I/O buffer of Gfarm library into page caches.

In our proposed method, in order to reduce this useless data
copy, data are directly transferred from I/O servers into page caches
of client nodes by using InfiniBand RDMA. Figure 2 describes
a RDMA WRITE-based implementation and Figure 3 describes a
RDMA READ-based one. When a client node reads data on Gfarm,
page caches of the client node are mapped to DMA regions, and
then date requests are transferred from an I/O server by using
RDMA WRITE (Figure 2) or RDMA READ (Figure 3). In the client
node, all the above operations are performed in kernel space.

!
"#$!

#%$&!'()*(+!

,-(./*!

0()*(+!12-3(!

"""!

4-5(!3-36(1!

722+83-9/*!

5:-).;:1!

<:-).!+8=)-)>!
%1()!12-3(!

!
"#$!

<:-).!?0@!

"""!

4-5(!3-36(1!

722+83-9/*!

<:-).!+8=)-)>!

A-B! A=B!

Fig. 1. The structures of (a) gfarm2fs and (b) Gfarm LKM

As a preliminary evaluation, we measured the throughput of
sequential read under the IOR benchmark. In the evaluation, we used
three nodes (a meta data server, an I/O server, and a client node)
connected by InfiniBand QDR 4×. The specification of the three

!"#$%&'(#)%*+%(,%'#'&,&#-)./#'0(1(#

234#(%)5%)!

234#6+7%)!

"""!

8"#$9:#)%*+%(,!

;"#$9:#<./=>%?.@#
9&A%#<&<B%(!

:>0%@,#@.'%#

C"#D&=(#=&A%#<&<B%(#,.#EDF#)%A0.@#

G"#H)&@(-%)(#)%*+%(,%'#'&,&#

I$EDFJK$2HLM#

Fig. 2. RDMA WRITE-based implementation of the proposed method

!"#$%&'(#)%*+%(,%'#'&,&#-)./#'0(1(#

234#(%)5%)!

234#6+7%)!

"""!

8"#$9:#)%*+%(,!

;"#<.=>?&=.@#
9&A%#?&?B%(!

:C0%@,#@.'%#

D"#E&F(#F&A%#?&?B%(#,.#GEH#)%A0.@#

I"#J)&@(-%)(#)%*+%(,%'#'&,&#

K$GEHL$MHGN#

Fig. 3. RDMA READ-based implementation of the proposed method

!!"#$%%

$&'#'%% $()#(%% $(*#$%%

#%%

)**#*%%

!**#*%%

$**#*%%

+**#*%%

"**#*%%

&**#*%%

!
"
#$
%
&
"
'
%
()
*+

,-
./
0
12
!

,-./0!-1%

,-./0!-123456%

34567839:;%

345673;64%

!!!"!##

$%&"!##
$'("%##

$)'"'##

'"'##

%''"'##

(''"'##

!''"'##

)''"'##

$''"'##

*''"'##

!
"
#$
%
&
"
'
%
#(
)*

+,
-.
/
01
!

+,-./(,0#

+,-./(,012345#

234567289:#

234562:53#

(x) (y)

Fig. 4. Throughput of file read when files are not cached (x) and cached (y)

nodes are Intel Xeon CPU E5-2609, 64 GB main memory, SAS HDD
15,000 rpm × 2 (RAID 0), and CentOS 6.3 64bit.

Figure 4 shows the throughput of reading a file (4GiB) se-
quentially. Figure 4 (x) is the result where an I/O server has
no caches, and Figure 4 (y) is the result where an I/O server
caches all requested data. gfarm2fs and gfarm2fs+RDMA repre-
sent original gfarm2fs and modified gfarm2fs that transfers data
using InIfiniBand RDMA. RDMA WRITE and RDMA READ rep-
resent our RDMA WRITE-based implementation (Figure 2) and
RDMA READ-based implementation (Figure 3) . As you can see
in Figure 4 (y), the throughput of RDMA READ slightly increases
compared with gfam2fs+RDMA.

Our current implementations have not made full use of InfiniBand.
However, we believe that the proposed method can achieve higher
throughput. For future works, we plan to optimize the proposed
method, and we are going to conduct further evaluation under real
applications.

REFERENCES

[1] O. Tatebe, K. Hiraga, and N. Soda, “Gfarm Grid File System,” New
Generation Computing, vol. 28, no. 3, pp. 257–275, 2010.

[2] E. Szeredi, “FUSE: Filesystem in userspace,” http://fuse.sourceforge.net/.

