
Pattern-driven Parallel I/O Tuning

Babak Behzad1, Surendra Byna2, Prabhat2,
Marc Snir1,3

1University of Illinois at Urbana-Champaign, 2Lawrence
Berkeley National Laboratory, 3Argonne National Laboratory

Babak Behzad Pattern-driven Parallel I/O Tuning

Data-driven Science

Modern scientific discoveries driven
by massive data

Stored as files on disks managed by
parallel file systems

Parallel I/O: Determining
performance factor of modern HPC

� HPC applications working with
very large datasets

� Both for checkpointing and input
and output

Figure: NCAR’s CESM Visualization

Figure: 1 trillion-electron VPIC dataset
Babak Behzad Pattern-driven Parallel I/O Tuning

Parallel I/O Subsystem

I/O subsystem is complex

There are a large number of knobs to set

MPIO

Application
Processes

Aggregator
Processes

I/O
Servers

I/O
Controllers Disks

HDF5/
PnetCDF MPIO

POSIX-
IO

Babak Behzad Pattern-driven Parallel I/O Tuning

Motivation by Related Work

Recent work at LANL on I/O Patterns by J. He et al. (HPDC’13)

“A typical I/O stack ignores I/O structures as data flows between
layers... Eventually distributed data structures resolve into simple
offset and length pairs in the storage system regardress of what initial
information was available. In this study, we propose techniques to
rediscover structures in unstructured I/O and represent them in a
lossless and compact way.”

Babak Behzad Pattern-driven Parallel I/O Tuning

Contributions

We provide a new representation for I/O patterns based on
the traces of high-level I/O libraries, such as HDF5.

This definition contains the global view of I/O accesses from
all MPI processes in parallel applications.

We develop a trace analysis tool for identifying I/O patterns
of an application automatically.

We show that using our runtime library, users can achieve
significant portion of the peak I/O performance for arbitrary
I/O patterns.

Babak Behzad Pattern-driven Parallel I/O Tuning

Addition to our Autotuning Framework

Tuning	

Phase	

Adop0on	

Phase	

Applica0on	

Extract	
 I/O	

Kernel	
 and	

Pa;ern	

Lookup	
 for	

Tuned	

Parameters	

Pairs	
 of	
 pa;erns	
 and	
 tuned	

parameters	

Tuned	

parameter	

set	
 (XML	

file)	

Tuned	

parameter	

set	
 (XML	

file)	

Applica0on	

H5Tuner	

Dynamic	

Library	

HPC	

System	

HDF5	

File	

Model-­‐based	

tuning	

Pa;ern	

previously	

tuned?	

Yes	

No	

Figure: Architecture Design of our proposed runtime system for Tuning
I/O

Babak Behzad Pattern-driven Parallel I/O Tuning

Autotuning Framework Review

Overview of Dynamic
Model-driven I/O tuning

Exploration

Pruning

Model Generation

HPC
System

Training Phase

Storage
System

Develop an
I/O Model

Training
Set

I/O Kernel

Top k
Configurations

R
efi

t t
he

 m
od

el
(C

on
tro

le
d

by
 u

se
r)

Performance Results
Select the Best

Performing Configuration

I/O Model
All Possible

Values

Refitting

Babak Behzad Pattern-driven Parallel I/O Tuning

I/O Pattern Definition

• Many ways of defining an I/O pattern of an application

• The key: Learn from the database community and separate
the I/O pattern of an application into two categories:

1 Physical Pattern: Related to the hardware configuration and
is specific to file system, platform, etc. → These are all
discussed in our previous work and statistical models have been
proposed for it.

2 Logical Pattern: Defined at the application level and the
focus of this work. Takes the number of processors that run
the application into account along with the distribution of the
data between them, etc.

Babak Behzad Pattern-driven Parallel I/O Tuning

Background: I/O Traces

1396296304.23583 H5Pcreate (H5P_FILE_ACCESS) 167772177 0.00003
1396296304.23587 H5Pset_fapl_mpio (167772177,MPI_COMM_WORLD,469762048) 0 0.00025
1396296304.23613 H5Fcreate (output/ParaEg0.h5,2,0,167772177) 16777216 0.00069
1396296304.23683 H5Pclose (167772177) 0 0.00002
1396296304.23685 H5Screate_simple (2,{24;24},NULL) 67108866 0.00002
1396296304.23688 H5Dcreate2 (16777216,Data1,H5T_STD_I32LE,67108866,0,0,0) 83886080 0.00012
1396296304.23702 H5Dcreate2 (16777216,Data2,H5T_STD_I32LE,67108866,0,0,0) 83886081 0.00003
1396296304.23707 H5Dget_space (83886080) 67108867 0.00001
1396296304.23708 H5Sselect_hyperslab (67108867,0,{0;0},{1;1},{6;24},NULL) 0 0.00002
1396296304.23710 H5Screate_simple (2,{6;24},NULL) 67108868 0.00001
1396296304.23710 H5Dwrite (83886080,50331660,67108868,67108867,0) 0 0.00009
1396296304.23721 H5Dwrite (83886081,50331660,67108868,67108867,0) 0 0.00002
1396296304.23724 H5Sclose (67108867) 0 0.00000
1396296304.23724 H5Dclose (83886080) 0 0.00001
1396296304.23726 H5Dclose (83886081) 0 0.00001
1396296304.23727 H5Sclose (67108866) 0 0.00000
1396296304.23728 H5Fclose (16777216) 0 0.00043

Figure: An I/O trace generated by the Recorder for a simple parallel
application called pH5Example

Babak Behzad Pattern-driven Parallel I/O Tuning

I/O Pattern Definition: H5S select hyperslab

• Higher-level I/O libraries give us much more concepts in order
to define and distinguish the the I/O operations.

• One of these concepts and probably the main one is the
concept of selection in HDF5.

• Selection is an important feature of HDF5 library to select
different parts of a file and memory.

• It also is the main point of difference for the processes to
choose different parts of the file in a parallel I/O application.

−→ We base our definition of I/O patterns on the concept of
selection.

Babak Behzad Pattern-driven Parallel I/O Tuning

I/O Pattern Definition: H5S select hyperslab

H5Sselect_hyperslab (...,H5S_SELECT_SET,{0;0},{1;1},{6;24},NULL) 0

H5Sselect_hyperslab (...,H5S_SELECT_SET,{6;0},{1;1},{6;24},NULL) 0

H5Sselect_hyperslab (...,H5S_SELECT_SET,{12;0},{1;1},{6;24},NULL) 0

H5Sselect_hyperslab (...,H5S_SELECT_SET,{18;0},{1;1},{6;24},NULL) 0

Rank 0:

Rank 1:

Rank 2:

Rank 3:

herr_t H5Sselect hyperslab(hid_t space_id, H5S_seloper_t op, const
hsize_t *start, const hsize_t *stride, const hsize_t *count, const
hsize_t *block)

Function Signature:

Figure: The four HDF5 hyperslab selection function calls across different
ranks of a parallel four-process run of pH5Example

Babak Behzad Pattern-driven Parallel I/O Tuning

I/O Pattern Abstraction: HPF Terminology

• In order to abstract these patterns into one metric to be able
to compare to, we make use of array distribution notation also
used in High Performance Fortran.

• Below is a short description of each of these distributions:
1 Block Distribution: Each process gets a single contiguous

block of the array
2 Cyclic Distribution: Array elements are distributed in a

round-robin manner
3 Degenerate Distribution: Represented by *, is basically no

distribution or serial distribution. It means that all the
elements of this dimension is assigned to one processor.

Babak Behzad Pattern-driven Parallel I/O Tuning

In Action: H5Analyze

H5Analyze is a code we have developed based on pattern
analysis provided by Zou et al. for analyzing HDF5 read and
write traces.

−→ <2D, (BLOCK, *), (6, 24)>

$./H5Analyze WRITE 1 testlog/pH5example_4 4
.
.
.
I/O Pattern with HPF Terminology:
Dataset name: output/ParaEg0.h5/Data1
 - Dimension: 2
 - Distribution: <BLOCK, DEGENERATE>
 - Size: <6, 24>
Dataset name: output/ParaEg0.h5/Data2
 - Dimension: 2
 - Distribution: <BLOCK, DEGENERATE>
 - Size: <6, 24>

Figure: Output of H5Analyze for pH5example code
Babak Behzad Pattern-driven Parallel I/O Tuning

VPIC-IO accesses

VPIC-IO (plasma physics): Vector Particle-In-Cell (VPIC) is a
computer code simulating plasma behavior.

P0 = [{0}, {1}, {8 M}, {0}]
P1 = [{8 M}, {1}, {8 M}, {0}]
P2 = [{16 M}, {1}, {8 M}, {0}]

...

[start, stride, count, block]

P0 P1 P2 ... Pn

0 8 M 16 M 24 M

−→ VPIC-IO: <1D, BLOCK, 8388608>

Babak Behzad Pattern-driven Parallel I/O Tuning

GCRM-IO accesses

GCRM-IO (global atmospheric model): Global Cloud
Circulation Model (GCRM), is an atmospheric model taking
large convective clouds into global climate models.

P0 = [{0,0,0}, {1,1,1}, {1,26,327680}, {0,0,0}]
P1 = [{0,0,327680}, {1,1,1}, {1,26,327680}, {0,0,0}]
P2 = [{0,0,655360}, {1,1,1}, {1,26,327680}, {0,0,0}]

...
.
.

[start, stride, count, block]

−→ GCRM-IO: <3D, (*, *, BLOCK), (1, 1, 327680)>
Babak Behzad Pattern-driven Parallel I/O Tuning

VORPAL-IO accesses

VORPAL-IO (accelerator modeling): VORPAL is an
acceleration modeling and computation plasma framework.

P0 = [{0,0,0}, {1,1,1}, {60,100,300}, {0,0,0}]
P1 = [{0,0,300}, {1,1,1}, {60,100,300}, {0,0,0}]
P2 = [{0,100,0}, {1,1,1}, {60,100,300}, {0,0,0}]

...
.
.

[start, stride, count, block]

−→ VORPAL-IO: <3D, (BLOCK, BLOCK, BLOCK), (60, 100,

300)>
Babak Behzad Pattern-driven Parallel I/O Tuning

Experimental Setup: Platforms

1 NERSC/Hopper
Cray XE6
Lustre Filesystem
Each file at max 156 OSTs
26 OSSs
Peak I/O Performance (one file per process): 35 GB/s

2 NERSC/Edison
Cray XC30
Lustre Filesystem
Each file at max 96 OSTs
24 OSSs
Peak I/O Performance (one file per process): 48 GB/s

Babak Behzad Pattern-driven Parallel I/O Tuning

Experimental Setup: Applications

1 IOR-1D: In order to have IOR issue write patterns similar to
VPIC- IO, we configured it to use its HDF5 interface:
./ior -s 8 -w -b 32m -t 32m.

2 Resemble-VORPAL-IO-3D: A synthetic benchmark with
similar I/O pattern to VORPAL-IO benchmark but with
different block sizes of 64×128×256 instead of 60×100×300
of VORPAL-IO.

3 FLASH-IO: Based on the output of H5Analyze tool,
FLASH-IO has 34 datasets, out of which 24 of them have the
same size as the largest size of the file. We choose those as
the pattern of FLASH-IO. These datasets are 4D and their
pattern of these dataset are also the same:
−→ <4D, (BLOCK, *, *, *)> → ≈ GCRM-IO.

Babak Behzad Pattern-driven Parallel I/O Tuning

Results: IOR-1D – The same I/O Pattern as VPIC-IO

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512 cores - Hopper 4096 cores - Hopper 512 cores - Edison 4096 cores - Edison

I/O
 B

an
dw

id
th

 (G
B

/s
)

Default Configuration
Autotuned Configuration

Figure: The I/O performance of the autotuned IOR on Hopper and
Edison compared the default configuration.

Babak Behzad Pattern-driven Parallel I/O Tuning

Results: Resemble-VORPAL-IO-3D – Different I/O Pattern
than VORPAL-IO

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512 cores - Hopper 4096 cores - Hopper 512 cores - Edison 4096 cores - Edison

I/O
 B

an
dw

id
th

 (G
B

/s
)

Default Configuration
Autotuned Configuration

Figure: The I/O performance of the autotuned Resemble-VORPAL-IO-3D
on Hopper and Edison compared the default configuration.

Babak Behzad Pattern-driven Parallel I/O Tuning

Results: FLASH-IO – A new application

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512 cores - Hopper 4096 cores - Hopper 512 cores - Edison 4096 cores - Edison

I/O
 B

an
dw

id
th

 (G
B

/s
)

Default Configuration
Autotuned Configuration

Figure: The I/O performance of the autotuned FLASH-IO application on
Hopper and Edison compared the default configuration.

Babak Behzad Pattern-driven Parallel I/O Tuning

Conclusions and Future Work

• In this paper, we propose a pattern-driven autotuning
framework to solve poor HPC I/O performance problem.

• We show that using high-level patterns, one can tune different
sets of applications ranging from the ones which have tuned
before the ones which are similar to the ones before, and
totally new ones.

• The framework consists of components to extract I/O
patterns, tune configuration for the detected patterns, store
them in a database of patterns associated with their I/O
model, and finally map an arbitrary I/O pattern to a previously
tuned model in order to improve its I/O performance.

Acknowledgements

• This work is supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

• This research used resources of the National Energy Research Scientific Computing Center.

Babak Behzad Pattern-driven Parallel I/O Tuning

