





# Heavy-tailed Distribution of Parallel I/O System Response Time

Bin Dong, Surendra Byna, and Kesheng Wu Scientific Data Management group Lawrence Berkeley National Laboratory, Berkeley, CA





#### **Outline**

Motivation

Response time sampling method

Analysis results of response time

### Estimating Response Time of I/O is Essential Element

- Data analysis query plan optimizing
  - Choose index or data organization with minimum read time
  - Scientific Data Services (SDS) framework,
     PostgresSQL, SciDB
- Data writing performance tuning
  - Select striping size, striping account, and other parameters to reduce write time
  - ExaHDF5, I/O Scheduler
- Simulator, Job Scheduler, Quality of service (QoS), etc.

## Modeling Response Time for Parallel I/O

Response time of a single big file request R:

$$T = max(t_1, t_2, ..., t_n) + \mu$$



## Simplifying Response Time Model

$$T = max(t_1, t_2, \ldots, t_n) + \mu$$

$$t_1$$

$$t_n$$

- Split/merge overhead  $\mu$  is constant
- n small requests  $\approx n$  sampling (i.i.d.) of n IO Servers
- $t_1, ..., t_n \approx n$  i.i.d. statistical variables
- Focus study on one (denoted by t) among  $t_1$ , ...,  $t_n$ 
  - -t: continuously distributed variable on  $(0, +\infty)$

## Applying Order Statistics to Estimate T

$$T = maximum(t_1, ..., t_n) + \mu$$
 $t : continuously distributed variable on  $(0, +\infty)$ 
 $F_t(x) : distribution function of t$ 
 $f_t(x) = F_t'(x) : density function of t$$ 

- Step 1: Compute density function  $f_{Yi}(y)$  with  $F_t(x)$  and  $f_t(x)$ 
  - $Y_i$ : the **i-th** largest value  $(t_1, t_2, ..., t_n)$ -  $f_{Y_i}(y) = F(y)^{n-i} (1-F(y))^{n-i} f_t(y) n! / [(i-1)!(n-i)!]$  Order Statistics
- Step 2: Compute response time  $T = Y_n$

#### **Problem Statement**

- What is the distribution function F(t) for the response time of each small file request?
  - Existing researches assume
    - Uniform Distribution
    - Normal Distribution
  - Are these assumptions true ?
  - If not, are there other distributions fitting better?

#### Our Method

 Sample the response time of two production storage systems

Analyze statistical properties of response time

## Response Time Sampling Environments

- Hopper and Edison at NERSC<sup>1</sup>
  - 153K and 130K CPU cores, 1.28 PF and 2.39PF
  - 5000 registered users
  - 300 online active users on Edison
  - I/O Intensive jobs use Lustre
- Lustre file system
  - Cache on client and I/O server
  - Network latency
  - 1 ~ 143 OSTes

**Computing Node** /w Lustre Client Cache Network Router Cache Lustre OST

<sup>&</sup>lt;sup>1</sup>National Energy Research Scientific Computing Center https://www.nersc.gov/

## Sampling Method

- One job sampling one OST
  - A job ≈ A small file request
  - Measure time of reading and writing separately
  - Test different reading/writing sizes
    - 12 different sizes: 512KB, 1MB, 2MB, ..., 1024MB
  - Match request size and striping size



## Sampling Method

- Measure response time on computing node
  - network, disk, cache
- Cache Consideration
  - No Cache
    - clear cache by accessing memory sized data before sampling
    - call fsync() after write
  - Cache
    - High frequently sampling



## Sampling Results Statistics Overview

|                     | Start Time | End Time   | Days | # of<br>Sampling | # of<br>OSTs |
|---------------------|------------|------------|------|------------------|--------------|
| Edison-<br>No-Cache | 08/13/2014 | 09/17/2014 | 35   | 14,977           | 12           |
| Edison-<br>Cache    | 02/20/2015 | 02/20/2015 | 1    | 927,691          | 12           |
| Hopper-<br>No-Cache | 10/01/2014 | 01/13/2015 | 104  | 13,868           | 12           |
| Hopper-<br>Cache    | 02/20/2015 | 02/20/2015 | 1    | 1,581,364        | 12           |
|                     |            | Summary    | 141  | 2,537,900        | 48           |

## Variability of Raw Response Time for Edison and Hopper, Cache and No-Cache









#### Ill-fit of Uniform or Normal Distribution



| Metrics  | Uniform | Normal |
|----------|---------|--------|
| Kurtosis | - 1.2   | 3      |
| Skewness | 0       | 0      |

## Ill-fit of Uniform, Normal, and Other Single Distribution Function

Read (Stripe Size: 64MB)



## **Exploring New Distributions**

- Partition response time into Head and Tail
- Find the pivot
  - minimizing KS (Kolmogorov-Smirnov) distances



## Fitting Results

• Edison-NoCache, Read Response Time, 64MB



|            | Accuracy                                               |
|------------|--------------------------------------------------------|
| Head Group | Normal > Cauchy                                        |
| Tail Group | Power Law > Log Normal > Exponential > Weibull > Gamma |

## Fitting Results

• Edison-NoCache, Write Response Time, 64MB



|            | Accuracy                                               |
|------------|--------------------------------------------------------|
| Head Group | Normal > Cauchy                                        |
| Tail Group | Power Law > Weibull > Exponential > Log Normal > Gamma |

## Percentage of Head group and Tail group

- 85% in Head group (i.e., small response time)
- 15% in Tail group (i.e., long response time)



### What is Wrong with Using Normal or Uniform?

|                                             | Long Response Time (Rare Event) |
|---------------------------------------------|---------------------------------|
| Uniform Distribution                        | All equal                       |
| Normal Distribution                         | 2.5%                            |
| Real Storage Systems<br>(Edison and Hopper) | 15%                             |





Read (Stripe Size: 64MB)

≈15%

Response Time (sec.)

1.0

## Summary

- Distribution function of response time of storage system is essential in estimating I/O performance
- We collected 2,537,900 response time sampling from 48 OSTes of 2 petascale storage systems across 141 days
- We found that single Normal or single Power law does not fit the response time
- We found that "Normal + Power law" fits response time better
- Future work
  - sample other storage systems
  - build accurate performance model
  - apply model to applications

## Acknowledgments

 Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy (Program manager: Lucy Nowell), support for the SDS project under contract number DE-AC02-05CH11231



National Energy Research Scientific Computing Center



## Thanks, Questions?

other questions, please email to: dbin@lbl.gov

## Heavy-tailed Distribution of Parallel I/O System Response Time

Bin Dong, Surendra Byna, and Kesheng Wu Scientific Data Management group Lawrence Berkeley National Laboratory, Berkeley





PDSW2015: 10TH Parallel Data Storage Workshop, Austin, TX, November 16, 2015