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Motivation 

 Nowadays in HPC, job schedulers such as 
PBS/TORQUE are used to assign physical nodes, 
exclusively, to users for running jobs. 
 Easy configuration through batch scripts 
 Low resource utilization 
 Hard to meet interactive and ad-hoc analytics’ QoS 

requirements. 

 Multiple jobs access to shared distributed or parallel file 
systems to load or save data. 
 Interference on PFS 
 Negative impact on jobs’ QoS 
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Resource Consolidation in Cloud 
Computing 
 In data centers, cloud computing has been widely 

deployed for elastic resource provisioning. 
 High isolation with low mutual interference  
 

 Cloud computing employs various virtualization 
technologies to consolidate physical resources.  
 Hypervisor-based virtualization: VMWare, Xen, KVM 
 OS-level virtualization: Linux container, OpenVZ, Docker 

 



University of Central Florida 

Virtualization in HPC 

 HPC uses high-end and dedicated nodes to run scientific 
computing jobs. 
 Could HPC analysis cluster be virtualized with low 

overhead? 
 What type of virtualization should be adopted? 

 According to the previous studies[1, 2, 3], the overhead 
of hypervisor-based virtualization is high. 
 Overhead on disk throughput ≈ 36% 
 Overhead on memory throughput ≈ 53%  

 
 [1] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev. Evaluating and modeling virtualization performance overhead for cloud environments. In 

CLOSER, pages 563-573, 2011. 
 [2] Stephen Soltesz, Herbert Potzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson. Container-based operating system virtualization: a scalable, high-performance 

alternative to hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages 275-287. ACM, 2007. 
 [3] Miguel G Xavier, Marcelo Veiga Neves, Fabio D Rossi, Tiago C Ferreto, Timoteo Lange, and Cesar AF De Rose. Performance evaluation of container-based 

virtualization for high performance computing environments. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro International Conference 
on, pages 233-240. IEEE, 2013. 
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Hypervisor and OS-level 
Virtualization 
 Virtualization technology takes advantage of the trade-off 

between isolation and overhead. 
 

 Hypervisor-based virtualization has a hypervisor (or VM 
monitor)  layer under the guest OS and it introduces high 
performance overhead and is not acceptable to HPC.  
 

 OS-level virtualization (container based) is a lightweight 
layer in Linux kernel. 
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Hypervisor and OS-level 
Virtualization (cont.) 
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The Internal Components of OS-
level Virtualization 
 OS-level virtualization shares the same operating system 

kernel. 
 

 1) Control Groups (CGroups) 
 CGroups controls the resource usage per process group. 
 

 2) Linux Namespaces 
 Linux Namespace creates a set of isolated namespaces such as 

PID and Network Namespaces etc. 
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Allocating Block I/O via OS-level 
Virtualization 
 There are two methods for allocating block I/O in 

CGroups module. 
 

 1) Throttling functionality 
 Set an upper limit to a process group’s block I/O  

 
 2) Weight functionality 

 Assign shares of block I/O to a group of processes 



University of Central Florida 

Contents 

 Motivation 
 Background for Virtualization 
 Our Solution: I/O Throttling Middleware 
 Evaluations 
 Related Work 
 Conclusion 
 Acknowledgement  

 



University of Central Florida 

Create Virtual Node (VNode) 
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The Gap Between Virtual Node and 
PFS 

Configuration Gap:  
The shared I/O resources of 
a PFS is hard to be 
controlled by current 
resource allocation 
mechanisms, since the I/O 
configurations on users' 
VNodes can not take effect 
on a remote PFS. 
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The Design of I/O Throttling 
Middleware 
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The Structure of VNode Sync 

VNode Sync: 
1) Accept I/O configurations 
2) Apply I/O configurations 

into VNodes 
3) Intercept users’ I/O 

request handlers 
4) Insert handlers into 

corresponding VNodes 
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Single Node Testbed 

The Configuration of Single Node Testbed 
Make& Model Dell XPS 8700 
CPU Intel i7 Processor, 64 bit, 18 MB L2, 2.8 GHz, 4 cores 
RAM 8×2 GB 
Internal Hard Disk 1× Western Digital Black SATA 7200rpm 1 TB 
Local File System EXT3 
Operating System CentOS 6 64-bit, kernel 2.6.32 504.8.1.el6 
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Distributed Testbed 
The Configuration of Marmot Cluster 

Reserve 17 nodes in Marmot 
Make& Model Dell PowerEdge 1950 
CPU 2 Opteron 242, 64 bit, 1 MB L2, 1GHz 
RAM 8×2.0 GB RDIMM, PC3200, CL3 
Internal Hard Disk 1× Western Digital Black SATA 7200rpm 2 TB 
Network Connection 1 × Gigabit Ethernet 
Operating System CentOS 6 64-bit, 2.6.32 504.8.1.el6 
Switch Make & Model 152 port Extreme Networks BlackDiamond 6808 
HDFS 1 head node and 16 storage nodes  
Lustre 1 head node, 8 storage nodes and 8 client nodes 
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Read Overhead on Single Node 
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The worst read overhead is less than 10%. 
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Weight Read on Single Node 

The result shows that the overhead of the weight function is less that 8%. The 
weight module does not suffer from interference and can provide effective 
isolation. 
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I/O Throttling on PFS 
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I/O throttling middleware can effectively control the aggregate bandwidth of 
PFSs and introduces negligible overhead 



University of Central Florida 

I/O Throttling on Real Application 
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The finish time of ParaView is increasing as the I/O throttle rate of background 
daemons increasing. 



University of Central Florida 

Contents 

 Motivation 
 Background for Virtualization 
 Our Solution: I/O Throttling Middleware 
 Evaluations 
 Related Work 
 Conclusion 
 Acknowledgement  

 



University of Central Florida 

Related Work 

 OS-level virtualization: 
 Authors [1, 2, 3], have evaluated the overhead (CPU, memory 

and disk) of OS-level virtualization compared with the traditional 
hypervisor based virtualization. 

 Multilanes [4] builds an isolated I/O stack for eliminating 
contentions on shared kernel structures and locks, while 
applying OS-level virtualization to control the I/O of fast block 
devices (SSD). 

 Resource allocation platform via OS-level virtualization: 
 Mesos [5] is a resource allocation platform for multiple users and 

multiple computing platforms such as Hadoop and MPI. Mesos 
takes advantage of OS-level virtualization (LXC) to provide 
cluster resource sharing (only CPU and memory) in a fine-
grained manner. 
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Conclusion 

 In this paper, we investigate the overhead and isolation 
of OS-level virtualization on block I/O control. 

 The block I/O control of OS-level virtualization introduces 
less than 15% overhead in average. 

 The weight functionality introduces at most 8% overhead 
and shows good performance isolation. 

 The throttle functionality introduces low performance 
overhead but has limited performance on the isolation. 

 The I/O throttling middleware can allocate PFS’s I/O to 
multiple users based on their priorities, with negligible 
overhead. 
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