
Experiences in Using OS-
level Virtualization for

Block I/O

Dan Huang, University of Central Florida
Jun Wang, University of Central Florida

Gary Liu, Oak Ridge National Lab

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Motivation

 Nowadays in HPC, job schedulers such as
PBS/TORQUE are used to assign physical nodes,
exclusively, to users for running jobs.
 Easy configuration through batch scripts
 Low resource utilization
 Hard to meet interactive and ad-hoc analytics’ QoS

requirements.

 Multiple jobs access to shared distributed or parallel file
systems to load or save data.
 Interference on PFS
 Negative impact on jobs’ QoS

University of Central Florida

Resource Consolidation in Cloud
Computing
 In data centers, cloud computing has been widely

deployed for elastic resource provisioning.
 High isolation with low mutual interference

 Cloud computing employs various virtualization
technologies to consolidate physical resources.
 Hypervisor-based virtualization: VMWare, Xen, KVM
 OS-level virtualization: Linux container, OpenVZ, Docker

University of Central Florida

Virtualization in HPC

 HPC uses high-end and dedicated nodes to run scientific
computing jobs.
 Could HPC analysis cluster be virtualized with low

overhead?
 What type of virtualization should be adopted?

 According to the previous studies[1, 2, 3], the overhead
of hypervisor-based virtualization is high.
 Overhead on disk throughput ≈ 36%
 Overhead on memory throughput ≈ 53%

 [1] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev. Evaluating and modeling virtualization performance overhead for cloud environments. In

CLOSER, pages 563-573, 2011.
 [2] Stephen Soltesz, Herbert Potzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson. Container-based operating system virtualization: a scalable, high-performance

alternative to hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages 275-287. ACM, 2007.
 [3] Miguel G Xavier, Marcelo Veiga Neves, Fabio D Rossi, Tiago C Ferreto, Timoteo Lange, and Cesar AF De Rose. Performance evaluation of container-based

virtualization for high performance computing environments. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro International Conference
on, pages 233-240. IEEE, 2013.

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Hypervisor and OS-level
Virtualization
 Virtualization technology takes advantage of the trade-off

between isolation and overhead.

 Hypervisor-based virtualization has a hypervisor (or VM
monitor) layer under the guest OS and it introduces high
performance overhead and is not acceptable to HPC.

 OS-level virtualization (container based) is a lightweight
layer in Linux kernel.

University of Central Florida

Hypervisor and OS-level
Virtualization (cont.)

University of Central Florida

The Internal Components of OS-
level Virtualization
 OS-level virtualization shares the same operating system

kernel.

 1) Control Groups (CGroups)
 CGroups controls the resource usage per process group.

 2) Linux Namespaces
 Linux Namespace creates a set of isolated namespaces such as

PID and Network Namespaces etc.

University of Central Florida

Allocating Block I/O via OS-level
Virtualization
 There are two methods for allocating block I/O in

CGroups module.

 1) Throttling functionality
 Set an upper limit to a process group’s block I/O

 2) Weight functionality

 Assign shares of block I/O to a group of processes

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Create Virtual Node (VNode)

University of Central Florida

The Gap Between Virtual Node and
PFS

Configuration Gap:
The shared I/O resources of
a PFS is hard to be
controlled by current
resource allocation
mechanisms, since the I/O
configurations on users'
VNodes can not take effect
on a remote PFS.

University of Central Florida

The Design of I/O Throttling
Middleware

University of Central Florida

The Structure of VNode Sync

VNode Sync:
1) Accept I/O configurations
2) Apply I/O configurations

into VNodes
3) Intercept users’ I/O

request handlers
4) Insert handlers into

corresponding VNodes

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Single Node Testbed

The Configuration of Single Node Testbed
Make& Model Dell XPS 8700
CPU Intel i7 Processor, 64 bit, 18 MB L2, 2.8 GHz, 4 cores
RAM 8×2 GB
Internal Hard Disk 1× Western Digital Black SATA 7200rpm 1 TB
Local File System EXT3
Operating System CentOS 6 64-bit, kernel 2.6.32 504.8.1.el6

University of Central Florida

Distributed Testbed
The Configuration of Marmot Cluster

Reserve 17 nodes in Marmot
Make& Model Dell PowerEdge 1950
CPU 2 Opteron 242, 64 bit, 1 MB L2, 1GHz
RAM 8×2.0 GB RDIMM, PC3200, CL3
Internal Hard Disk 1× Western Digital Black SATA 7200rpm 2 TB
Network Connection 1 × Gigabit Ethernet
Operating System CentOS 6 64-bit, 2.6.32 504.8.1.el6
Switch Make & Model 152 port Extreme Networks BlackDiamond 6808
HDFS 1 head node and 16 storage nodes
Lustre 1 head node, 8 storage nodes and 8 client nodes

University of Central Florida

Read Overhead on Single Node

 0

 0.2

 0.4

 0.6

 0.8

 1

1 V N _ 1 6 K B1 V N _ 1 6 M B2 V N _ 1 6 K B2 V N _ 1 6 M B4 V N _ 1 6 K B4 V N _ 1 6 M B8 V N _ 1 6 K B8 V N _ 1 6 M

R e a d B a n d w i d t h N o r m a l i z e d

 t o P h y s i c a l C a s e

Numble of VNodes and Object Size

The worst read overhead is less than 10%.

University of Central Florida

 0
 20
 40
 60
 80

 100
 120
 140

P h y _ 1 6 K BP h y _ 1 6 M B1 0 _ 1 6 K B1 0 _ 1 6 M B2 0 _ 1 6 K B2 0 _ 1 6 M B3 0 _ 1 6 K B3 0 _ 1 6 M B4 0 _ 1 6 K B4 0 _ 1 6 M BR e a d B a n d w i d t h (M B / s)

Throttle Rate on Bottom VNode (MB/s) and Object Size

Throttling Read on Single Node

The throttle functionality could guarantee the process’s I/O does not exceed
the upper limits. But it is largely influenced by other concurrent processes

10M
B/s

20M
B/s

30M
B/s

40M
B/s

R
ead

University of Central Florida

 0

 0.2

 0.4

 0.6

 0.8

 1

1 V N _ 1 6 K B1 V N _ 1 6 M B2 V N _ 1 6 K B2 V N _ 1 6 M B3 V N _ 1 6 K B3 V N _ 1 6 M B4 V N _ 1 6 K B4 V N _ 1 6 M

R e a d B a n d w i d t h N o r m a l i z e d

 t o P h y s i c a l C a s e

Numble of VNodes and Object Size

Weight Read on Single Node

The result shows that the overhead of the weight function is less that 8%. The
weight module does not suffer from interference and can provide effective
isolation.

100%

50%

50%

50%

25%

25%

40%

20%

20%

20%

R
ead

University of Central Florida

I/O Throttling on PFS

 0

 200

 400

 600

 800

 1000

 1200

W /O _ V N1 0 M B /s 2 0 M B /s 4 0 M B /s 8 0 M B /s 1 6 0 M B /s 0

 20

 40

 60

 80

 100

 120

 140
A g g r e g a t e R e a d B a n d w i d t h (M B / s) A g g r e g a

 f o r L

Throttle Rate to DFS Block I/O

HDFS with Data Locality
HDFS W/O Data Locality

Lustre N-to-N
Lustre N-to-1

I/O throttling middleware can effectively control the aggregate bandwidth of
PFSs and introduces negligible overhead

University of Central Florida

I/O Throttling on Real Application

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

W /O _ D MW /O _ T H T L5 M B /s1 0 M B /s2 0 M B /s4 0 M B /s6 0 M B /s8 0 M B /s1 0 0 M B /s

F i n i s h T i m e (m s) o f P a r a V i e w

Throttle Rate to Competing Daemons' I/O

Data Load Time of ParaView (ms)
Computing Time of Paraview (ms)

The finish time of ParaView is increasing as the I/O throttle rate of background
daemons increasing.

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Related Work

 OS-level virtualization:
 Authors [1, 2, 3], have evaluated the overhead (CPU, memory

and disk) of OS-level virtualization compared with the traditional
hypervisor based virtualization.

 Multilanes [4] builds an isolated I/O stack for eliminating
contentions on shared kernel structures and locks, while
applying OS-level virtualization to control the I/O of fast block
devices (SSD).

 Resource allocation platform via OS-level virtualization:
 Mesos [5] is a resource allocation platform for multiple users and

multiple computing platforms such as Hadoop and MPI. Mesos
takes advantage of OS-level virtualization (LXC) to provide
cluster resource sharing (only CPU and memory) in a fine-
grained manner.

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Conclusion

 In this paper, we investigate the overhead and isolation
of OS-level virtualization on block I/O control.

 The block I/O control of OS-level virtualization introduces
less than 15% overhead in average.

 The weight functionality introduces at most 8% overhead
and shows good performance isolation.

 The throttle functionality introduces low performance
overhead but has limited performance on the isolation.

 The I/O throttling middleware can allocate PFS’s I/O to
multiple users based on their priorities, with negligible
overhead.

University of Central Florida

Acknowledgement

 The experiments of this work are conducted at the
PRObE Marmot cluster.

University of Central Florida

Reference
 [1] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev. Evaluating and

modeling virtualization performance overhead for cloud environments. In CLOSER, pages 563-
573, 2011.

 [2] Stephen Soltesz, Herbert Potzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: a scalable, high-performance alternative to
hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages 275-287. ACM,
2007.

 [3] Miguel G Xavier, Marcelo Veiga Neves, Fabio D Rossi, Tiago C Ferreto, Timoteo Lange, and
Cesar AF De Rose. Performance evaluation of container-based virtualization for high performance
computing environments. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on, pages 233-240. IEEE, 2013.

 [4] Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai. Multilanes:
providing virtualized storage for os-level virtualization on many cores. In FAST, pages 317-329,
2014.

 [5] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy
Katz, Scott Shenker, and Ion Stoica. Mesos: a platform for fine-grained resource sharing in the
data center. In Proceedings of the 8th USENIX conference on Networked systems design and
implementation, NSDI'11, pages 22-22, Berkeley, CA, USA, 2011. USENIX Association.

University of Central Florida

	Experiences in Using OS-level Virtualization for Block I/O
	Contents
	Contents
	Motivation
	Resource Consolidation in Cloud Computing
	Virtualization in HPC
	Contents
	Hypervisor and OS-level Virtualization
	Hypervisor and OS-level Virtualization (cont.)
	The Internal Components of OS-level Virtualization
	Allocating Block I/O via OS-level Virtualization
	Contents
	Create Virtual Node (VNode)
	The Gap Between Virtual Node and PFS
	The Design of I/O Throttling Middleware
	The Structure of VNode Sync
	Contents
	Single Node Testbed
	Distributed Testbed
	Read Overhead on Single Node
	Throttling Read on Single Node
	Weight Read on Single Node
	I/O Throttling on PFS
	I/O Throttling on Real Application
	Contents
	Related Work
	Contents
	Conclusion
	Acknowledgement
	Reference
	Slide Number 31

