Tackling the Reproducibility Problem
In Systems Research with Declarative
Experiment Specifications

Ivo Jimenez, Carlos Maltzahn ()
Adam Moody, Kathryn Mohror ()
Jay Lofstead ()
Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau ()

The Reproducibility Problem

60
s s e e e e e
& 50
Eg“’
Efa y
o
8=2 v +— no repiication
y, - 2x repication
5 10 + 3x ropiication
4
0
16 1024 4006

64 256
Write Size (KB)
Figure 5: Per-OSD write performance. The horizontal
line indicates the upper limit imposed by the physical
disk. Replication has minimal impact on OSD through-
put, although if the number of OSDs is fixed, n-way
replication reduces total effective throughput by a factor
of n because replicated data must be written to n OSDs.

o 60

3 —— e ———— =
2 * writes

@ 50 \

Z N ST o

5 40+ of 0>

2 H

£ v ebos
2 %0+ / p ext3
£ J —— reiserfs
F 20,/ «reads, 4 s
2 Y o 2o .
8 10+ P o = = S SN e
A e 2

<o

4 16 64 256 1024 4096 16384
VO Size (KB)

Figure 6: Performance of EBOFS compared to general-
purpose file systems. Although small writes suffer from
coarse locking in our prototype, EBOFS nearly saturates
the disk for writes larger than 32 KB. Since EBOFS lays
out data in large extents when it is written in large incre-
ments, it has significantly better read performance.

write out large files, striped over 16 MB objects, and read
them back again. Although small read and write per-
formance in EBOFS suffers from coarse threading and
locking, EBOFS very nearly saturates the available disk
bandwidth for writes sizes larger than 32 KB, and signifi-
cantly the others for read workloads b

3

no replication
2x replication
3x replication

write
sync lock, async write

Wite Latency (ms)

256 1024

IS

64
Write Size (KB)
Figure 7: Write latency for varying write sizes and repli-
cation. More than two replicas incurs minimal additional
cost for small writes because replicated updates occur
concurrently. For large synchronous writes, transmis-
sion times dominate. Clients partially mask that latency
for writes over 128 KB by acquiring exclusive locks and
asynchronously flushing the data.

« crush (32« PGs)
crush (2 PGs)

- hash (32« PGs)
hash (4 PGs)

~—— linear

2 6 101 18
OSD Custer Sze
Figure 8: OSD write performance scales linearly wi
the size of the OSD cluster until the switch is saturated
at 24 OSDs. CRUSH and hash performance improves
when more PGs lower variance in OSD utilization.

tion. Because the primary OSD simultaneously retrans-
mits updates to all replicas, small writes incur a mini-
mal latency increase for more than two replicas. For
larger writes, the cost of retransmission dominates; 1 MB
writes (not shown) take 13 ms for one replica, and 2.5
times longer (33ms) for three. Ceph clients partially
mask this latency for synchronous writes over 128 KB
by acquiring exclusive locks and then asynchronously
flushing the data to disk. Alternatively, write-sharing

etwork
Isks

105

O W O

140 -

120

S conf.

Original

Magic numbers
Workloa

Jitter

etc...

Reproduced?

Goal: define methodology so that
we don’'t end up in this situation

Outline

* Re-execution vs. validation

* Declarative Experiment Specification (ESF)
* Case Study

* Benefits & Challenges

Outline

* Re-execution vs. validation

* Declarative Experiment Specification (ESF)
* Case Study

* Benefits & Challenges

Reproducibility Workflow

1. Re-execute experiment
— Recreate original setup, re-execute experiments
— Technical task

2. Validate results

— Compare against original

— A subjective task
 How do we express objective validation criteria?
* What contextual information to include with results?

——~

" wNeed.a piece of

algorithm/system/etC. is better tha mgunmm LOH]deISOH
the state-of-t

~
SN

N

—~

NO-FEEDBACK

ISrc,Eqid, Version,Datetime,Lat, Lon,Magnitude,Depth,NST,Region
ci,14692356,1, "Tuesday, May 4, 2010 38 UT 6443,
ci,14692348,1, "Tuesday, May 2010 .1998,
ci,14692332,1 May . 2010

Queries

4 .
ci,14692324,1, y, May 4, 2010 132.6763, -
ci,14692316,1," May 4 132.6778, -
ci,14692308,1," May 4 106: '32.7071, OODIBAD
i) 1469239 " '
Meall s (111465 I
Exper:=ent - — St S

ay
Inc, 71392116 0, “Tuesday.
ci,14692244,1, "Tuesday,
jci,14692228,1, "Tuesday,
jci,14692220,1, "Tuesday,
ci,14692212,1, "Tuesday,
i, 14692188, 1, "Tuesday, May
ci, 146921860,1, "Tuesday,
c1 14692172,1, "Tuesday.

Observations

es the time required to complete MySQL's test-

Figure 5 illu

DTA only for the non-authenticated pdl’l of the cxuulmn and lhc
switching o no instrumentation and ISR respectively. We observe
that the overhead of applying DTA diminishes, as the unauthen-
ticated partition runs only for a short period of time. In general,

\ partitioned execution performs similarly to the mechanism applied
\ N on the authenticated partition.
~ ”’
\———————————————— ——————————————_’

P el e

\

7’
-

e e e o o o o e e o o o O e EE S o o o —

N
~

Outline

* Re-execution vs. validation

* Declarative Experiment Specification (ESF)
* Case Study

* Benefits & Challenges

5
goal_text: >
demonstrate that Ceph scales linearly wit
the size of the cluster

oy -proof-of-concapss

goa

experiments:
- reference: 'figure-8'
name . __see — experiment’

ags: ['throughput
hardware_dependencies:

- type: 'hdd'
bw: '58 MB/s'
- type: 'network’

bw: '1GbE'
software_dependencies:
- type: 'os

kernel: 'linux 2.6.32'

Experiment Goal: Show that my
algorithm/system/etc. is better
than the state-of-the-art.

distro: 'debian 6.0'
- type: 'storage'

name: 'ceph'

version: '0.1.67'
workload:
- type: 'rados-benchmark’

configuration:
object-size: '4mb’'
time: '120s’
threads: 16

Means of
Experiment

indepepdert_
ype: method
values: ['raw',
desc: >

raw corresponds to hdd sequential write

performance, expressed in MB/s
- type: 'size'

values: ['2-24', '2']
dependent_variable:
- type: 'throughput'

scale: 'mb/s’
statistical_functions:

unctions: ['avg', 'stddev']

(Y01 C SRV P .
validations:
- >

for

size=*

expect

ceph >= (raw * 0.9)

fsr,Eqid, Version,Datetine, Lat, Lon, Magni tude, Dey
iay 03:21:38

pth, NST,Region
UTC*,32.6443, -

Total Work

NO-FEEDBACK

3
Queries
1P THEN O-F BREG OO DIBAD |

2

Figure 5 illustrates the time required to complete MySQL's test-
nsert benchmark. Applying DTA and ISR on the server for the
ntire duration of the test increases execution time by 4.8x and
6x respectively, when compared to native execution. In contrast.
p\rtitioning slows down execution by 1.8x and 2.6x, when usin;
DYA only for the non-authenticated part of the execution, and th
swighing (o no instrumentation and ISR respectively. We obse
that Ve overhead of applying DTA diminishes, as the unautjfen-
ticate§partition runs only for a short period of time. In gegfleral,
partitioNgd execution performs similarly to the mechanism gpplied
on 1 enticated partition.

Validation Language Syntax

validation
‘for' condition ('and' condition)* 'expect' result ('and' result)*

condition
:vars ('in' range | ('=' | '<"' | '>" | '!I=") value)
result
condition

vars
:var (',' var)*
range
‘' range_num (',' range_num)* ']’

range_num
NUMBER '-' NUMBER | '*'

value
"*' | 'NUMBER (',' NUMBER)*

Outline

* Re-execution vs. validation

* Declarative Experiment Specification (ESF)
« Case Study

* Benefits & Challenges

Ceph OSDI ‘06

* Select scalability experiment.
— Distributed; makes use of all resources
— Main bottlenecks: I/0 and network
* Why this experiment?
— Top conference
— 10 year old experiment

— ldeal reproducibility conditions
» Access to authors, topic familiarity, same hardware,

— Even in an ideal scenario, we still struggle
* Demonstrates which missing info is captured by an ESF!

Per-OSD Average
Throughput (MB/s)

Validation Statement

"independent_variables": [{
"type": “cluster_size”,
for "values": “2-28”
4 —_ k }v {
cluster_size = * and "type": "method",
not net Saturated uva'luesu: [urawu, "Ceph"]
B }o o
expect "type": "net_saturated",
ceph >= (raw * .90) "values": ["true", "false"]
1,
"dependent_variable": {
60 1= "type": "throughput",
~\-",/-‘¥ "scale": "mb/s"
—— },
50 ==
40 ==
30 ==
1 1 1 z 1 1 1
] | | | | | 1
2 6 10 14 18 22 26 12

Cluster size

=
[

[EY

§.0.9
30.8
2
£0.7
2 0.6
o
L 0.5
a
3 0.4
I 0.3 __-.-reproduced
€02 — N
2 01 | =®@=original
0 : : : : —
1 2 3 s 6 7 _8 9 10 11 12 ---2426
OSD Cluster Size
Component Original Reproduced
CPU AMD 2212 @2.0GHz Intel E5-2630 @2.3GHz
Disk drive Seagate D620NS P G _A5R071_H
Disk BW 58 MB/s 220 MB/s (15 MB/s limifIs
Linux .0.Y 13,0
Ceph commit from 2005 0.87.1
Storage 26 nodes 12 nodes
Clients 20 nodes 1 node

Network Netgea 48T Same as.ariginal
Network BW 1400 MB

Benefits & Challenges

Why care about Reproducibility?

* Good enough is not an excuse
— We can always improve the state of our practice

— How do we compare hardware/software in a
scientific way?

e Ex

herimental Cloud Infrastructure
PRODbE / CloudLab / Chameleon

Having reproducible / validated experiments

would represent a significant step toward
embodying the scientific method as a core
component of these infrastructures

Benefits of ESF-based methodology

* Brings falsibiability to our field
— Statements can be proven false

* Automate validation
— Validation becomes an objective task

Validation Workflow

Obtain/

recreate

means of
experiment.

Re-run and check
validation clauses against
output. Any validation
failed?

Original work
findings are
corroborated

Any significant

differences

between original
and recreated

means?

no

Update
means of
experiment

Cannot

validate

original
claims

Benefits of ESF-based methodology

* Brings falsibiability to our field
— Statements can be proven false

* Automate validation

— Validation becomes an objective task
e Usability

— We all do this anyway, albeit in an ad-hoc way
* |Integrate into existing infrastructure

Integration with Existing Infrastructure

T |
(==
| =R TTTIT
push Sdee Test:
an - Unit
- Integration
- Validations

ESF /

G\@meleo “““
#PROb)

(lél I d | a b Parallel Reconfigurable
M Observational Environment

Challenges

* Reproduce every time
— Include sanity checks as part of experiment

— Alternative: corroborate that network/disk
observes expected behavior at runtime

* Reproduce everywhere
— Example: GCC’s flags, 108% combinations

— Alternative: provide image of complete
software stack (e.g. linux containers)

Conclusion

ESFs:

Embody all components of an experiment
Enable automation of result validation
Brings us closer to the scientific method

Our ideal future:

— Researchers use ESFs to express an hypothesis
— Toolkits for ESFs produce metadata-rich figures
— Machine-readable evaluation section

https://github.com/systemslab/esf

Thanks!

Validations

{
"type": "method”,
"values": [“raw”, "cuckoo", "trie"]
',
{
"type": "workload",
"values": [
"individual", "bulk", "lookup”
]
',
"dependent_variable": {
"type": "throughput",
"scale": "bytes/second”
}

The h
for
workload=* flash
expect
cuckoo > raw and trie > raw bUdg
for -
lookup Op.erc
expect | This |
cuckoo > trie
and demc
for
individual and bulk mEEt
expect ComF
cuckoo > trie
Tyvpe Cuckoo hashing Trie
yp (K keys/s) (K keys/s)
Individual insertion 10182 -
Bulk insertion - 7603
Lookup 1840 208

Table 5: In-memory performance of index data structures in

SILT on a single CPU core.

Geneiatakis et. al. CCS 12

Native
Pin
ISR

DTA

DTAPIN — —
DTAISR

L DL L L L B B
0 500 1000 1500 2000 2500 3000 3500

Total Time (sec)

24

Experiment Goal

In this section, our goal is to evaluate the
performance benefits that can be reaped, by
utilizing virtual partitioning to apply otherwise
expensive protection mechanisms on the most
exposed part of applications. This allows us to
strike a balance between the overhead imposed
on the application and its exposure to attacks.

Native _ip—
Pn T
'SR
OTA
DTAPIN — —
DTAISR

L B B B B B
0 500 1000 1500 2000 2500 3000 3500

Total Time (sec)

Experiment Goal

In this section, our goal is to evaluate the
performance benefits that can be reaped, by
utilizing virtual partitioning to apply otherwise
expensive protection mechanisms on the most
exposed part of applications. This allows us to
strike a balance between the overhead imposed
on the application and its exposure to attacks.

Native _ip—
Pn T
'SR
OTA
DTAPIN — —
DTAISR

L B B B B B
0 500 1000 1500 2000 2500 3000 3500

Total Time (sec)

Schema

Native

Pin

ISR

DTA

DTA/Pin

DTA/ISR

IlllllIlllllllllllllllllllllll'lllll

0

500

1000

1500 2000
Total Time (sec)

2500

3000

3500

27

Schema

Native
Pin
ISR

DTA

DTAPIN — —
DTAISR

"independent variables": [

{
n typell :

"method",

"alias": [”technique”],
"values": [
“nat.ivell’ “p.inll’ “.isr.!!’
“dta_pin”, “dta_isr”

]
}
1,

"dependent _variable": {

n typell :
"scale":

}s

runtime",
“Sll

“dta!! ,

L DL B B
0 500 1000 1500 2000

Total Time (sec)

"
3500

28

Validations

Native
Pin
ISR

DTA

DTAPIN — —
DTAISR

"independent variables": [

{

N
0 500 1000 1500 2000

Total Time (sec)

"type": "method",
"alias": [”technique”],
"values": [
“native", “pin", “isr”, “dta”,
“dta_pin”, “dta_isr”
]
}
1,
"dependent _variable": {
"type": “runtime",
"scale": “s"
¥,
T
3500
29

Validations

expect
native < any

Native
Pin
ISR

DTA

DTAPIN — —
DTAISR

"independent variables": [

{
n typell :

"method",

"alias": [”technique”],
"values": [
“nat.ivell, “p.inll’ “.isr.!!’
“dta_pin”, “dta_isr”

]
}
1,

"dependent _variable": {

n typell :
"scale":

}s

runtime",
“Sll

“dta!! ,

N
0 500 1000 1500 2000

Total Time (sec)

"
3500

30

Validations

expect
native < any and

Native
Pin
ISR

DTA

DTAPIN — —
DTAISR

"independent variables": [

{

N
0 500 1000 1500 2000

Total Time (sec)

"type": "method",
"alias": [”technique”],
"values": [
“native", “pin", “isr”, “dta”,
“dta_pin”, “dta_isr”
]
}
1,
"dependent _variable": {
"type": “runtime",
"scale": “s"
¥,
T
3500
31

Validations

expect
native < any and

dta_pin between pin and isr

Native
Pin
ISR

DTA

DTAPIN — —
DTAISR

"independent_variables": [
{
"type": "method",
"alias": [”technique”],
"values": [
“native", “pin", “isr”,
“dta_pin”, “dta_isr”
]
}
1,
"dependent _variable": {
"type": “runtime",
"scale": “s"

}s

“dta!! ,

N
0 500 1000 1500 2000

Total Time (sec)

"
3500

32

Validations

expect
native < any and

dta _pin between pin and isr and

Native
Pin
ISR

DTA

DTAPIN — —
DTAISR

"independent_variables": [
{
"type": "method",
"alias": [”technique”],
"values": [
“native", “pin", “isr”,
“dta_pin”, “dta_isr”
]
}
1,
"dependent _variable": {
"type": “runtime",
"scale": “s"

}s

“dta!! ,

N
0 500 1000 1500 2000

Total Time (sec)

"
3500

33

Validations

expect
native < any and

dta _pin between pin and isr and
dta_isr between isr and dta

Native
Pin
ISR

DTA

DTAPIN — —
DTAISR

"independent variables": [

N
0 500 1000 1500 2000

Total Time (sec)

{
"type": "method",
"alias": [”technique”],
"values": [
“native", “pin", “isr”, “dta”,
“dta_pin”, “dta_isr”
]
}
I,
"dependent _variable": {
"type": “runtime",
"scale": “s"
},
i
3500
34

Example 2

Pure-FTPd

Samba

OpenSSH

Example 2

Native
Pin

ISR

DTA
DTA/Pin
DTA/ISR

my gup-§ § |

I
30

T 1
40 50 60

Execution Time (sec)

190 36

Pure-FTPd

Samba

OpenSSH

Schema

"independent_variables": [
{
"type": "method",
"values": [
“native", “pin", “isr”, “dta”,
“dta_pin”, “dta_isr”
]
}
1,
"dependent_variable": {
"type": “"runtime",
"scale": “s"
B Native },
B Pin
B 1SR
0 bta
B DTA/PIn
[J DTANSR
| [l
| ——
/]
| | | | | | // |
0 10 20 30 40 50 60 190

37
Execution Time (sec)

Pure-FTPd

Samba

OpenSSH

Schema

"independent variables": [
{
"type": "method”,
"values": [
“native", “pin", “isr”, “dta”,
“dta_pin”, “dta_isr”
1
},
{
"type": "workload”,
"values": [“ftp", “samba", “ssh”]
}
B Native 1,
: Pin "dependent_variable": {
ISR n " . 9 .]
o || Lfypel: [runtimer,
B DTAPIn ’
[J bTA/nSR 3
| [l
I —
[l
| | | | | | // |
10 20 30 40 50 60 190 38

Execution Time (sec)

Pure-FTPd

Samba

OpenSSH

Validations

"independent variables": [

{

"type": "method”,
for . "values": [
workload= “native", “pin", “isr”, “dta”,
expe;t “dta_pin”, “dta_isr”
native < any and]
dta_pin between pin and isr and },
dta_isr between isr and dta {
"type": "workload”,
"values": [“ftp", “samba", “ssh”]
}
B Native 1,
: Pin "dependent_variable": {
ISR n " . ”» : "

o || Lfypel: [runtimer,

B DTAPIN ’

[J DTA/ISR b

| [l
] e
/|
| | | | | | // |
10 20 30 40 50 60 190 39

Execution Time (sec)

Falsifiability in Science

Falsibiability of a statement, hypothesis, or theory is an
Inherent possibility to prove it to be false.

* In other words, the ability to specify the
conditions under which a statement is false

* Synonymous to Testability

 Example:
— Statement: All swans are white

— Falsifiable: Observe one black swan

source: en.wikipedia.org/wiki/Falsifiability

Geologic time scale, 650 million years ago to the present »

. " B
o |ere period events AN
Quaternary evolution of humans \
18H o
Tl 2 Tertiary mammals diversify
LU
S0H ©
extinction of dinosaurs ‘ {(u
- - . i
100 H Cretaceous first primates iy ‘J ~K
"k‘\ i \ 7- 2
L first flowering plants __’r;}' _ RS
1501 & first birds P g
; -~
= Jurassic dinosaurs diversify
200 H —
B first mammals - Sy
Triassic . - - =
first dinosaurs
230 major extinctions " -}
2 Permian 7 f e
on (rs.l =
" reptiles dwersnf{ﬂ» - e, Y. s
5 3004 L w | Pennsvivai first reptiles o o ——.
E’., _§ § ¥ scale trees N —_— g
© %& Mississippian | 59%d ferns i J
g2 3|04 |9 , » -
S o | first amphibians = ":'- T
= E Devonian jawed fishes divers |fy. S
400H 3 e
= i
e Silurian | first vascular land plants .
450 ' o S
S sudden diversification - B
Ordovician of metazoan families TN
S00 H first fishes
Cambrian first chordates
990 H B | first skeletal elements ‘Q/
§ first soft-bodied metazoans B E ’,/
soold & | first animal traces N& 4
: pl eS|
2 4 N
Yoy ' L R
esoll — & ‘

Falsifiability in Systems

. Figure
Experiment Goal: Show that my mem——

algorithm/system/etc. is better than " o ~ f

N

0.95
the state-of-the-art. £ o €000
2
~ 085
8
© 0.80 = .
Raw data NO-FEEDBACK
0.75
BAD
Src,Eqid, Version,Datetime, Lat,Lon,Magnitude,Depth,NST,Region 0.70 .
ci,14692356,1, "Tuesday, May 4, 2010 03:21:38 UTC",32.6443,-1 :
ci,14692348,1, "Tuesday, May 4, 2010 138 UTC",32.1998, -1 1 2 3 2 5
ci,14692332,1, "Tuesday, May 4, 2010 UTC",32.6756, -1)
ci,14692324,1, "Tuesday, May 4, 2010 UTC",32.6763, -1 Queries .
ci,14692316,1, "Tuesday, May 4, 2010 UTC",32.6778, -1 L
ci,14692308,1, "Tuesday, May 4, 2010 uTC",32.7071, -1 {0 P THESN O - F BRI OO DisiBAD
ci,14692300,1, "Tuesday, May 4, 2010 uTC",32.1948,-1
2k, 10047267, 1, "Tuesday, May 4, 2010 UTC",61.2695, -1
M ci,14692284,1, "Tuesday, May 4, 2010 uTC",32.7016, -1
ea nS O ci,14692276,1, "Tuesday, May 4, 2010 UTC",32.6998, -1
lak, 10047263, 1, "Tuesday, May 4, 2010 UTC",63.5779, -1 1 NMT41143A-1 : 4 cCTITTT : :
. ak, 10047261, 1, "Tuesday, May 4, 2010 UTC",60.4986, -1
ci,14692268, 1, "Tuesday, May 4, 2010 uTC",32.6813, -1
Xperl | I I n ci,14692260,1, "Tuesday, May 4, 2010 uTC",32.2006, -1
nc,71392116,0, "Tuesday, May 4, 2010 UTC",38.8415, -1
ci,14692244,1, "Tuesday, May 4, 2010 uTC",33.5248, -1
ci,14692228,1, "Tuesday, May 4, 2010 uTC",32.6823, -1 o
ci,14692220,1, "Tuesday, May 4, 2010 UTC",32.6881, -1 O bse rvatl 0 n S
ci,14692212,1, "Tuesday, May 4, 2010 UTC",32.6398, -1
ci,14692188,1, "Tuesday, May 4, 2010 uTC",32.5003, -1
ci,14692180,1, "Tuesday, May 4, 2010 uTC",32.6836, -1 . - . . .
€i,14692172,1, "Tuesday, May 4, 2010 uTc®,32.5321, -1 Figure 5 illustrates the time required to complete MySQL's test-
ci,14692164,1, "Tuesday, May 4, 2010 UTC",32.6833, -1 e 7

insert benchmark. Applying DTA and ISR on the server for the
entire duration of the test increases execution time by 4.8x and
2.6x respectively, when compared (o native execution. In contrast,
partitioning slows down execution by 1.8x and 2.6x, when using
DTA only for the non-authenticated part of the execution, and then
switching (o no instrumentation and ISR respectively. We observe
that the overhead of applying DTA diminishes, as the unauthen-
ticated partition runs only for a short period of time. In general,
partitioned execution performs similarly to the mechanism applied
on the authenticated partition.

42

Falsifiability in Systems

* To falsify a claim:
— Describe the means of the experiments
— Provide validation statements over the output data

 Conditional statement:
— if means are properly recreated
— then validation statements should hold

* Go from inert observations to falsifiable statements
From:
We observe that our system outperforms the alternatives
To:

Expect 25-30% performance improvement on hardware
platform X, on workload Y, when configured like Z

Early Feedback

Creating an ESF helps authors to:

* Find meaningful/reproducible baselines
* Create a feedback loop in author’s mind
» Specify exactly what author means
 Make temporal context explicit

