
Tackling the Reproducibility Problem 
in Systems Research with Declarative 

Experiment Specifications 

Ivo Jimenez, Carlos Maltzahn (UCSC) 
Adam Moody, Kathryn Mohror (LLNL) 

Jay Lofstead (Sandia) 
Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau (UWM) 



The Reproducibility Problem 

Original 

20 

40 

60 

80 

100 

120 

Cluster size 

Th
ro

ug
hp

ut
 (M

B/
s)

 140 

 1         2        3       4         5         6         7        8       9    10  11    12    13 

Reproduced? 

2	

•  Network  
•  Disks 
•  BIOS 
•  OS conf. 

•  Magic numbers 
•  Workload 
•  Jitter 
•  etc... 

Goal: define methodology so that 
we don’t end up in this situation 



Outline 

•  Re-execution vs. validation 
•  Declarative Experiment Specification (ESF) 
•  Case Study 
•  Benefits & Challenges 

3	



Outline 

•  Re-execution vs. validation 
•  Declarative Experiment Specification (ESF) 
•  Case Study 
•  Benefits & Challenges 

4	



Reproducibility Workflow 

1.  Re-execute experiment 
– Recreate original setup, re-execute experiments 
– Technical task 

2.  Validate results 
– Compare against original 
– A subjective task 

•  How do we express objective validation criteria? 
•  What contextual information to include with results? 

5	



libs 

OS 
code, 

workload data 

hardware 

Experiment Goal: Show that my 
algorithm/system/etc. is better than 
the state-of-the-art. 

Means of 
Experiment 

Figure 

Observations 

Raw data 

6	



Outline 

•  Re-execution vs. validation 
•  Declarative Experiment Specification (ESF) 
•  Case Study 
•  Benefits & Challenges 

7	



8	

Experiment Goal: Show that my 
algorithm/system/etc. is better 
than the state-of-the-art. 

Means of 
Experiment 



Validation Language Syntax 
validation 
 : 'for' condition ('and' condition)* 'expect' result ('and' result)* 
 ; 
 
condition 
 : vars ('in' range | ('=' | '<' | '>' | '!=') value) 
 ; 
 
result 
 : condition 
 ; 
 
vars 
 : var (',' var)* 
 ; 
 
range 
 : '[' range_num (',' range_num)* ']' 
 ; 
 
range_num 
 : NUMBER '-' NUMBER | '*' 
 ; 
 
value 
 : '*' | 'NUMBER (',' NUMBER)* 
 ; 

9	



Outline 

•  Re-execution vs. validation 
•  Declarative Experiment Specification (ESF) 
•  Case Study 
•  Benefits & Challenges 

10	



Ceph OSDI ‘06 

•  Select scalability experiment. 
– Distributed; makes use of all resources 
– Main bottlenecks: I/O and network 

•  Why this experiment? 
–  Top conference 
–  10 year old experiment 
–  Ideal reproducibility conditions 

•  Access to authors, topic familiarity, same hardware,  
–  Even	in	an	ideal	scenario,	we	s:ll	struggle	

•  Demonstrates	which	missing	info	is	captured	by	an	ESF! 

11	



for 
  cluster_size <= 24 
expect 
  ceph >= 55 mb/s 

Ceph OSDI ’06 Scalability Experiment Schema of Experiment Output Data Validation Statement 

for 
  cluster_size <= 24 
expect 
  ceph >= 55 mb/s 

for 
  cluster_size <= 24 
expect 
  ceph >= (raw * .90) 

for 
  cluster_size <= 24 
expect 
  ceph >= (raw * .90) 

"independent_variables": [{ 
  "type":   “cluster_size”, 
  "values": “2-28” 
}], 
"dependent_variable": { 
  "type": "throughput", 
  "scale": "mb/s" 
}, 

"independent_variables": [{ 
  "type":   “cluster_size”, 
  "values": “2-28” 
},{ 
  "type":   "method", 
  "values": ["raw", "ceph"] 
}], 
"dependent_variable": { 
  "type": "throughput", 
  "scale": "mb/s" 
}, 

"independent_variables": [{ 
  "type":   “cluster_size”, 
  "values": “2-28” 
},{ 
  "type":   "method", 
  "values": ["raw", "ceph"] 
}], 
"dependent_variable": { 
  "type": "throughput", 
  "scale": "mb/s" 
}, 

"independent_variables": [{ 
  "type":   “cluster_size”, 
  "values": “2-28” 
}, { 
  "type":   "method", 
  "values": ["raw", "ceph"] 
},{ 
  "type":   ”net_saturated", 
  "values": [”true", ”false"] 
}], 
"dependent_variable": { 
  "type": "throughput", 
  "scale": "mb/s" 
}, 

12	

for 
  cluster_size <= 24 
expect 
  ceph >= (raw * .90) 

for 
  cluster_size = * and 
  not net_saturated 
expect 
  ceph >= (raw * .90) 

30 

40 

50 

Cluster size 

Pe
r-

O
SD

 A
ve

ra
ge

 
Th

ro
ug

hp
ut

 (M
B/

s)
 60 

         2               6                     10                   14                  18          22             26 



13	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1.1	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

N
or
m
al
iz
ed

	P
er
-O
SD

	T
hr
ou

gh
pu

t	

OSD	Cluster	Size	

reproduced	

original	

.	.	.		24		26		

.	.	.		



Benefits & Challenges 

14	



Why care about Reproducibility? 

•  Good enough is not an excuse 
– We can always improve the state of our practice 
– How do we compare hardware/software in a 

scientific way? 
•  Experimental Cloud Infrastructure 
– PRObE / CloudLab / Chameleon 
– Having reproducible / validated experiments 

would represent a significant step toward 
embodying the scientific method as a core 
component of these infrastructures 

15	



Benefits of ESF-based methodology 

•  Brings falsibiability to our field 
– Statements can be proven false 

•  Automate validation 
– Validation becomes an objective task 

16	



Validation Workflow 

Obtain/
recreate 
means of 

experiment. 

Original work 
findings are 
corroborated 

Update 
means of 

experiment 

Cannot 
validate 
original 
claims 

no 

yes 

no 

yes 
Any significant 

differences 
between original 

and recreated 
means? 

Re-run and check 
validation clauses against 

output. Any validation 
failed? 

17	



Benefits of ESF-based methodology 

•  Brings falsibiability to our field 
– Statements can be proven false 

•  Automate validation 
– Validation becomes an objective task 

•  Usability 
– We all do this anyway, albeit in an ad-hoc way 

•  Integrate into existing infrastructure 

18	



Integration with Existing Infrastructure 

19	

push code Test: 
- Unit 
- Integration 
 

pull 
 

Test: 
- Unit 
- Integration 
- Validations 

push code 
and 
ESF 



Challenges 

•  Reproduce every time 
–  Include sanity checks as part of experiment 
– Alternative: corroborate that network/disk 

observes expected behavior at runtime 
•  Reproduce everywhere 
– Example: GCC’s flags, 10806 combinations 
– Alternative: provide image of complete 

software stack (e.g. linux containers) 

20	



Conclusion 

ESFs: 
•  Embody all components of an experiment 
•  Enable automation of result validation 
•  Brings us closer to the scientific method 
•  Our ideal future: 
– Researchers use ESFs to express an hypothesis 
– Toolkits for ESFs produce metadata-rich figures 
– Machine-readable evaluation section 

21	https://github.com/systemslab/esf 



Thanks! 

22	



SILT SOSP ‘11 Experiment Goal Schema Validations 
The high random read speed of 
flash drives means that the CPU 
budget available for each index 
operation is relatively limited. 
This microbenchmark 
demonstrates that SILT’s indexes 
meet their design goal of 
computation-efficient indexing. 

23	

{ 
  "type": ”method”, 
  "values": [“raw”, "cuckoo", "trie"] 
}, 
{ 
  "type": "workload", 
  "values": [ 
    "individual", "bulk", "lookup” 
  ] 
}, 
"dependent_variable": { 
  "type":  "throughput", 
  "scale": ”bytes/second" 
} 

for 
 workload=* 
expect 
 cuckoo > raw and trie > raw 
for 
 lookup 
expect 
 cuckoo > trie  
and 
for 
 individual and bulk 
expect 
  cuckoo > trie 



Geneiatakis et. al. CCS ‘12 

24	



In this section, our goal is to evaluate the 
performance benefits that can be reaped, by 
utilizing virtual partitioning to apply otherwise 
expensive protection mechanisms on the most 
exposed part of applications. This allows us to 
strike a balance between the overhead imposed 
on the application and its exposure to attacks. 

Experiment Goal 

25	



In this section, our goal is to evaluate the 
performance benefits that can be reaped, by 
utilizing virtual partitioning to apply otherwise 
expensive protection mechanisms on the most 
exposed part of applications. This allows us to 
strike a balance between the overhead imposed 
on the application and its exposure to attacks. 

Experiment Goal 

26	



Schema 

27	



Schema 
"independent_variables": [ 
  { 
    "type":   ”method", 
    "alias":  [”technique”], 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

28	



Validations 
"independent_variables": [ 
  { 
    "type":   ”method", 
    "alias":  [”technique”], 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

29	



Validations 
"independent_variables": [ 
  { 
    "type":   ”method", 
    "alias":  [”technique”], 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

expect 
 native < any 
 
 

30	



Validations 
"independent_variables": [ 
  { 
    "type":   ”method", 
    "alias":  [”technique”], 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

expect 
 native < any and 
 
 

31	



Validations 
"independent_variables": [ 
  { 
    "type":   ”method", 
    "alias":  [”technique”], 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

expect 
 native < any and 
 dta_pin between pin and isr 
 

32	



Validations 
"independent_variables": [ 
  { 
    "type":   ”method", 
    "alias":  [”technique”], 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

expect 
 native < any and 
 dta_pin between pin and isr and 
 

33	



Validations 
"independent_variables": [ 
  { 
    "type":   ”method", 
    "alias":  [”technique”], 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

expect 
 native < any and 
 dta_pin between pin and isr and 
 dta_isr between isr and dta 

34	



Example 2 

35	



Example 2 

36	



Schema 
"independent_variables": [ 
  { 
    "type":   ”method", 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

37	



Schema 
"independent_variables": [ 
  { 
    "type":   ”method”, 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  }, 
  { 
    "type":   ”workload”, 
    "values": [“ftp", “samba", “ssh”] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

38	



Validations 
"independent_variables": [ 
  { 
    "type":   ”method”, 
    "values": [ 
      “native", “pin", “isr”, “dta”, 
      “dta_pin”, “dta_isr” 
    ] 
  }, 
  { 
    "type":   ”workload”, 
    "values": [“ftp", “samba", “ssh”] 
  } 
], 
"dependent_variable": { 
  "type":  ”runtime", 
  "scale": “s" 
}, 

for 
 workload=* 
expect 
 native < any and 
 dta_pin between pin and isr and 
 dta_isr between isr and dta 

39	



Falsifiability in Science 

Falsibiability of a statement, hypothesis, or theory is an 
inherent possibility to prove it to be false. 

 
•  In other words, the ability to specify the 

conditions under which a statement is false 
•  Synonymous to Testability 
•  Example: 
–  Statement: All swans are white 
–  Falsifiable: Observe one black swan 

 

source: en.wikipedia.org/wiki/Falsifiability 

40	



41	



42	

libs 

OS 
code, 

workload data 

hardware 

Experiment Goal: Show that my 
algorithm/system/etc. is better than 
the state-of-the-art. 

Means of 
Experiment 

Figure 

Observations 

Raw data 

Falsifiability in Systems 



Falsifiability in Systems 
•  To falsify a claim: 
–  Describe the means of the experiments 
–  Provide validation statements over the output data 

•  Conditional statement: 
–  if means are properly recreated 
–  then validation statements should hold 

•  Go from inert observations to falsifiable statements 
From: 
   We observe that our system outperforms the alternatives 
To: 
   Expect 25-30% performance improvement on hardware   
platform X, on workload Y, when configured like Z 

43	



Early Feedback 

Creating an ESF helps authors to: 
•  Find meaningful/reproducible baselines 
•  Create a feedback loop in author’s mind 
•  Specify exactly what author means 
•  Make temporal context explicit 

44	


