In Search of a Fast and
Efficient Serverless DAG
Engine

Benjamin Carver, Jingyuan Zhang, Ao Wang, Yue Cheng

£ GEoraE LEAP

UNIVERSITY

Serverless Computing

e Emerging cloud computing platform based on the composition of fine-grained
user-defined functions

e Service provider is responsible for provisioning, scaling, and managing
resources

e Pay-per-use pricing model with fine granularity

> &

Background

e Data analytics applications can be modeled as a directed acyclic graph (DAG)
based workflow "Fan-in"

o Nodes: fine-grained tasks @
o Edges: dependencies between tasks, often large fan-outs

e DAG workflows well-suited for serverless computing (or @ @

Functions-as-a-Service)
o Auto-scaling accommodates short tasks and bursty workloads
o Pay-per-use keeps the cost of short tasks low @

From Serverful to Serverless

e Serverful focuses on load balancing and cluster utilization
o Bounded resources, unlimited time
o User explicitly allocates tasks to processors
o Servers managed by the user

e Serverless platforms provide a nearly unbounded amount of ephemeral

resources
o Bounded time, unlimited resources
o Cloud provider automatically allocates serverless functions to VMs
o Servers managed by the service provider

AWS Lambda Constraints

e Lambda function invocation currently take 50ms on average
e Qutbound-only network connectivity
e Relatively low network bandwidth

e Execution time limits (900 seconds)

e Lack of quality-of-service (QoS) control, leading to stragglers
o e.g., cold starts

Existing Parallel Frameworks Using Serverless Computing

e PyWren [SoCC’'17]
o Parallelize existing Python code with AWS Lambda

e Numpywren
o System for linear algebra built atop PyWren

e ExCamera [NSDI'17]

o System which allows users to edit, transform, and encode videos using fine-grained serverless
functions

e gg[ATC19]

o Framework and command-line tools to execute “everyday applications” within cloud functions

Typical Approaches

e Approach 1: Queue-based Master-Worker

(@)

(@)

e Approach 2: Centralized scheduler directly invokes
cloud functions to process ready tasks,
e.g., ExCamera

(@)

Task Queue
Master

Master submits ready tasks to a queue

Workers are cloud functions that process tasks in
parallel, e.g., Numpywren Data Store
Drawbacks: cannot exploit data locality as easily; Worker Cloud Functions
reading from queue could become a bottleneck

Drawback: centralized scheduler could become a
bottleneck for system

Worker Cloud Functions

Wukong solves these drawbacks.

Wukong
e Approach

e Architecture

o Static Scheduler
o Task Executors
o Storage Manager

e Evaluation

Task executors cooperate here!
Our Approach - Wukong

Static Scheduling Dynamic Scheduling
Original DAG Static Schedule 1 Static Schedule 2 e

) Executor 1 I:iTaSk 5!

@ .jf/Task 5\“) Task 5 ~

: // \ : 7
Y 3 : & Executor 1(Task 3| (Task 4| () Executor 2
@ - (Task3 Task4) | P4

@ @ (st Task2) Task 1 Task 2

| “J'Eié/cutoﬂ | @Executor2. A, Executor 1 ¢ Executor 2
e Statically partition DAG into sub-DAGs e Decentralized, cooperative scheduling
o Assign each partition to a Lambda function o Lambda functions coordinate with each

other to execute overlapping sections of 0
assigned sub-DAGs

Wukong

e Approach

e Architecture

o Static Scheduler
o Task Executors
o Storage Manager

e FEvaluation

11

Transfer DAG Data over TCP ~ Storage Manager

Static|Scheduler
Vit h

Client| Submit Tasks| | Schedule | | FinalResults J
Generator

v Y
Initial Task Executor
\ Invokers /

-

Final Results

[KV Store |
— Proxy
--------- Invoke
Shards *
e i | |Fan-out Invokers
N L e 4
Fan-out andé
data storage Invoke

A

4

Serverless Task Execution

and Scheduling

12

Static Scheduler

Static Scheduler

-

> \Transfer DAG Data over TCP

Client| Submit Tasks j Schedule

Generator

y

y

Final Results

........................

S'torage Manager

Initial Task Executor

Invokers

o

~/

v

Serverless Task Execution
and Scheduling

Partitions DAG into sub-DAG using a
depth-first search (DFS) from each leaf node.

Assigns sub-DAGs to executors

13

Storage Manager
A

Executors
Static Scheduler f \
Fan-in, fan-out, store data

Invoke /\ Invoke

A A
\)\ f
\ . X /

Serverless Task Execution
and Scheduling

1 tr 1
™

/
Decentralized, cooperating schedulers ‘Tas" 3 | aExecum” \Task 5 Task 6 Task 7

Schedule and execute tasks in assigned / Fan '“> € Executor 4‘\0Exe%utcyv Executor 3

sub-DAGs rTask 1) @sk 2 ‘Task 4

Cooperate on scheduling tasks contained in T

two or more sub-DAGs 14

(Executor 1 YExecutor 2 € Executor 3

Sto rag e M an ag er Transfer DAG Data over TCP Storége Managerl

. KV Store |
e Proxy
Static Scheduler «-----n2.Results
Invoke
| Shards '
r— + | | Fan-out Invokers
Fan-out andi

Fan-in!

® Performs storage operations on behalf of
Executors and Static Scheduler

® Using KV Store for intermediate data storage

data storage;

‘Serverless!Task
and Scheduling

v N

Execut

4

ion

15

Wukong

e Approach

e Architecture

o Static Scheduler
o Task Executors
o Storage Manager

e Evaluation

16

Experimental Goals

e Identify and describe the factors influencing performance and scalability

e Compare WUKONG against Dask

o Can WUKONG achieve performance comparable to Dask distributed executing on
general-purpose VMs, given the inherent limitations of AWS Lambda?

17

Experimental Setup

e Compare against Dask distributed running on two different setups.
o 5-node EC2 cluster of t2.2xlarge VMs
o Laptop
m Windows 7 64-bit
m Intel Core i5-6200U CPU @ 2.30GHz
s 8GBRAM

e \Wukong Static Scheduler, KV Store, and KV Store Proxy running on
c5.18xlarge EC2 VMs.

e Task Executor allocated 3GB memory with timeout set to two minutes.

18

Four DAG Applications

e Microbenchmark
o Tree Reduction: repeatedly add adjacent elements of an array until a single value remains

e Linear Algebra
o General Matrix Multiplication (GEMM)
m 10,000 x 10,000 and 25,000 x 25,000
o Singular Value Decomposition (SVD)
m n X nmatrix and a tall-and-skinny matrix, varying sizes

e Machine Learning

o Support Vector Classification (SVC)
m 100,000 - 800,000 samples

19

Tree Reduction

B Strawman
= Wukong
20 -

13 =

(seconds)
S

(@)
!

Average Execution Time

o
|

m PubSub m Parallel-Invoker
m Dask (EC2) m Dask (Laptop)

/

= o NN
Tree Reduction (n=1024)

20

Tree Reduction with Delays

m Strawman m PubSub m Parallel-Invoker
Wukong m Dask (EC2)

o1 O N
e il oo JY

Average Execution Time

Oms 100ms 250ms 500ms
Sleep Amount (ms)

21

General Matrix Multiplication (GEMM) and Support

Vector Classification (SVC)
GEMM SVC

m Dask (Laptop) = Dask (EC2) mWukong m Dask (Laptop) mDask (EC2) mWukong

2 80 - o 107
Z 9 = é 8 -
2 560 - S
o €50 - =9 6
2 840 o O
o S 4
%9,30 R w o
w
g 20 - = 2
©
s 11 XX .
: <
10k x 10k 25k x 25k 100k 200k 400k 800k

Problem Size Number of Samples

22

Singular Value Decomposition (SVD) - “Tall and Skinny”

SVD tall-and-skinny
Dask (Laptop) mDask (EC2) m=mWukong

12
10 ~
I

(seconds)

Average Execution Time

et
yruiii
-
e

200k x 100 400k x 100 800k x 100 1000k x 100
Problem Size

X = da.random.random((200000, 100), chunks=(10000, 100))
u, s, v = da.linalg.svd(X)
v.compute () # Begin execution 23

Singular Value Decomposition-“‘nxn”

SVD-Compressed (rank 5) n x n

Rank 5 SVD-Compressed of n x n Matrix
m Dask (Laptop) m Dask (EC2) m Current Wukong = PDSW Wukong

W

350 A
| — = |

300 -
10kx 25kx 30kx 100kx 128kx 196kx 256k x
10k 25k S0k 100k 128k 196k 256k

Problem Size

X = da.random.random((10000, 10000), chunks=(2000, 2000)) - ~ -~

u, s, v = da.linalg.svd compressed (X, k=5)

v.compute () # Begin execution EeEEEssREErEE s EieeeGuisiee

Average Execution Time
(seconds)
= a2 NN
QIO 01 OO,
(o oo K e i o B
X
T
—
|
|
1
|

24

Influencing Performance

Factors

B Task Invokers Using Scheduling Domains
KV Shards Have Their Own VM (Wukong)

Multiple KV Store Shards

Parallel-Invoker

N Decentralization of Task Executors

B Using KV Store Proxy
KV Store Proxy Using PubSub

100%

B PubSub

wouoomoo 0%&

9,.9.9%
KKK
RESEESLEELEEL

XXX
BRSS555AEE
% K
RS
PRRXSS]
%% <5
%5% X%
e
o%o X

oo
.:...x
]
PRI
IRRRR]
]
ogesesatetess!

Sedeietoieols!

90%

25

SVD 2

SVD 1

Tree Reduction

10%
0%

80%
70%
60%
50%
40%
30%
20%

Conclusion

e Serverless platform introduces unique challenges and opportunities

e Decentralization provides a large performance increase
o Data locality and minimizing network overhead are also important to performance

e \WUKONG achieves performance comparable to serverful Dask distributed

running on general-purpose EC2 VMs
o Improves performance by as much as 3.1x as problem size increases

26

Thank you!

Questions?

Contact: Benjamin Carver - bcarver2@gmu.edu

GitHub: https://github.com/mason-leap-lab/\Wukong 0

oeonce LE/AP
L3

(q)

UNIVERSITY

https://github.com/mason-leap-lab/Wukong

SVD 50,000 x 50,000 CDF Plot

—dependency_processing
—invoking_downstream_tasks

Cumulative Proability

--redis_read_time
redis_write_time

—_
|

o
©

o
o)

o
~l
L

o
(0]
|

o
on

o
~

o
w
I

o
N
|

o
-—

o

0.0001

0.001

—_— —

~-task_execution
—deserialize_time

-

0.01

/
/
f
l
=
[/
| /
ﬂ/'
ﬁ.
/!
I —

Time (milliseconds)

10

-
- -

100

1000

10000

28

SVD n x n with “ideal storage”

m Dask (Laptop) m Dask (EC2)

m \Wukong Wukong (with ideal storage)
400 -

350 +
300 -
» 250 A
£ 200 -

3
@ 190 -
~100 -
50
ol . .
10k x 10k 25k x 25k 50k x 50k 100k x 100k

Problem Size

Average Execution Time

29

SVD Phase #2 {10k x 10k |25k x 25k |50k x 50k 100k x 100k [256k x 256k
[2k x 2K] [2k x 2K] [Sk x 5Kk] [Sk x 5K] [Sk x 5K]

NumPaths 95 565 345 1309 8376

NumTasks 172 800 507 1727 10509

NumLambdas |~84 ~480 ~295 ~1082 267 to
10511

LeafTasks 30 182 110 420 2756

SVD Phase #1 200k x 100 [10k x 100]

NumPaths 20

NumTasks 42

NumLambdas ~20

LeafTasks

20

30

ScaLAPACK numpywren Slow

Algonthm (sec) (sec) down
SVD 57,919 LESNIR L 23x
QR 3,486 25,108 7.19x
GEMM 2,010 2,670 1.33x%
Cholesky 2,417 3,100 1.28x

Table 1: A comparison of ScaLAPACK vs numpywren
execution time across algorithms when run on a square
matrix with N=256K

= N N
a o O,
o o o

=
o
o

o

Average Execution Time (seconds)

w

o

o
|

[8)]
o
1

Rank 5 Compressed Singular Value Decomposition of a

Square Matrix

Wukong
276.0730
164.5215
807808820010
ooos3 60635 14.8119
10kx 10k 25kx 25k 50kx 50k 100kx 128kx 196kx 256kx
100k 128k 196k 256k

Problem Size

31

