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Serverless Computing

e Emerging cloud computing platform based on the composition of fine-grained
user-defined functions

e Service provider is responsible for provisioning, scaling, and managing
resources

e Pay-per-use pricing model with fine granularity
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Background

e Data analytics applications can be modeled as a directed acyclic graph (DAG)
based workflow "Fan-in"

o Nodes: fine-grained tasks @
o Edges: dependencies between tasks, often large fan-outs

e DAG workflows well-suited for serverless computing (or @ @

Functions-as-a-Service)
o Auto-scaling accommodates short tasks and bursty workloads
o Pay-per-use keeps the cost of short tasks low @



From Serverful to Serverless

e Serverful focuses on load balancing and cluster utilization
o Bounded resources, unlimited time
o User explicitly allocates tasks to processors
o Servers managed by the user

e Serverless platforms provide a nearly unbounded amount of ephemeral

resources
o Bounded time, unlimited resources
o  Cloud provider automatically allocates serverless functions to VMs
o Servers managed by the service provider



AWS Lambda Constraints

e Lambda function invocation currently take 50ms on average
e Qutbound-only network connectivity
e Relatively low network bandwidth

e Execution time limits (900 seconds)

e Lack of quality-of-service (QoS) control, leading to stragglers
o e.g., cold starts



Existing Parallel Frameworks Using Serverless Computing

e PyWren [SoCC’'17]
o Parallelize existing Python code with AWS Lambda

e Numpywren
o System for linear algebra built atop PyWren

e ExCamera [NSDI'17]

o System which allows users to edit, transform, and encode videos using fine-grained serverless
functions

e gg[ATC19]

o Framework and command-line tools to execute “everyday applications” within cloud functions



Typical Approaches

e Approach 1: Queue-based Master-Worker

(@)

(@)

e Approach 2: Centralized scheduler directly invokes
cloud functions to process ready tasks,
e.g., ExCamera

(@)

Task Queue
Master

Master submits ready tasks to a queue

Workers are cloud functions that process tasks in
parallel, e.g., Numpywren Data Store
Drawbacks: cannot exploit data locality as easily; Worker Cloud Functions
reading from queue could become a bottleneck

Drawback: centralized scheduler could become a
bottleneck for system

Worker Cloud Functions



Wukong solves these drawbacks.



Wukong
e Approach

e Architecture

o  Static Scheduler
o Task Executors
o Storage Manager

e Evaluation



Task executors cooperate here!
Our Approach - Wukong
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Original DAG Static Schedule 1  Static Schedule 2 e

) Executor 1 I:iTaSk 5!

@ .jf/Task 5\“) Task 5 ~

: // \ : 7
Y 3 : & Executor 1(Task 3| (Task 4| () Executor 2
@ - (Task3 Task4) | P4

@ @ (st Task2) Task 1 Task 2

| “J'Eié/cutoﬂ | @Executor2. A, Executor 1 ¢ Executor 2
e Statically partition DAG into sub-DAGs e Decentralized, cooperative scheduling
o Assign each partition to a Lambda function o Lambda functions coordinate with each

other to execute overlapping sections of 0
assigned sub-DAGs



Wukong

e Approach

e Architecture

o Static Scheduler
o Task Executors
o Storage Manager

e FEvaluation
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Transfer DAG Data over TCP ~ Storage Manager
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Static Scheduler
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Serverless Task Execution
and Scheduling

Partitions DAG into sub-DAG using a
depth-first search (DFS) from each leaf node.

Assigns sub-DAGs to executors
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Sto rag e M an ag er Transfer DAG Data over TCP Storége Managerl
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Wukong

e Approach

e Architecture

o Static Scheduler
o Task Executors
o Storage Manager

e Evaluation
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Experimental Goals

e Identify and describe the factors influencing performance and scalability

e Compare WUKONG against Dask

o Can WUKONG achieve performance comparable to Dask distributed executing on
general-purpose VMs, given the inherent limitations of AWS Lambda?
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Experimental Setup

e Compare against Dask distributed running on two different setups.
o 5-node EC2 cluster of t2.2xlarge VMs
o Laptop
m  Windows 7 64-bit
m Intel Core i5-6200U CPU @ 2.30GHz
s 8GBRAM

e \Wukong Static Scheduler, KV Store, and KV Store Proxy running on
c5.18xlarge EC2 VMs.

e Task Executor allocated 3GB memory with timeout set to two minutes.
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Four DAG Applications

e Microbenchmark
o Tree Reduction: repeatedly add adjacent elements of an array until a single value remains

e Linear Algebra
o General Matrix Multiplication (GEMM)
m 10,000 x 10,000 and 25,000 x 25,000
o Singular Value Decomposition (SVD)
m n X nmatrix and a tall-and-skinny matrix, varying sizes

e Machine Learning

o Support Vector Classification (SVC)
m 100,000 - 800,000 samples
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Tree Reduction
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Tree Reduction with Delays
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General Matrix Multiplication (GEMM) and Support

Vector Classification (SVC)
GEMM SVC

m Dask (Laptop) = Dask (EC2) mWukong m Dask (Laptop) mDask (EC2) mWukong

2 80 - o 107
Z 9 = é 8 -
2 560 - S
o €50 - =9 6
2 840 o O
o S 4
%9,30 R w o
w
g 20 - = 2
©
s 11 XX .
: <
10k x 10k 25k x 25k 100k 200k 400k 800k

Problem Size Number of Samples

22



Singular Value Decomposition (SVD) - “Tall and Skinny”

SVD tall-and-skinny
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X = da.random.random( (200000, 100), chunks=(10000, 100))
u, s, v = da.linalg.svd(X)
v.compute () # Begin execution 23



Singular Value Decomposition-“‘nxn”

SVD-Compressed (rank 5) n x n
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Influencing Performance

Factors

B Task Invokers Using Scheduling Domains
KV Shards Have Their Own VM (Wukong)

Multiple KV Store Shards

Parallel-Invoker

N Decentralization of Task Executors

B Using KV Store Proxy
KV Store Proxy Using PubSub
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Conclusion

e Serverless platform introduces unique challenges and opportunities

e Decentralization provides a large performance increase
o Data locality and minimizing network overhead are also important to performance

e \WUKONG achieves performance comparable to serverful Dask distributed

running on general-purpose EC2 VMs
o Improves performance by as much as 3.1x as problem size increases
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Thank you!

Questions?

Contact: Benjamin Carver - bcarver2@gmu.edu

GitHub: https://github.com/mason-leap-lab/\Wukong 0
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https://github.com/mason-leap-lab/Wukong
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SVD n x n with “ideal storage”

m Dask (Laptop) m Dask (EC2)

m \Wukong Wukong (with ideal storage)
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SVD Phase #2 {10k x 10k |25k x 25k |50k x 50k 100k x 100k [256k x 256k
[2k x 2K] [2k x 2K] [Sk x 5Kk] [Sk x 5K] [Sk x 5K]

NumPaths 95 565 345 1309 8376

NumTasks 172 800 507 1727 10509

NumLambdas |~84 ~480 ~295 ~1082 267 to
10511

LeafTasks 30 182 110 420 2756

SVD Phase #1 200k x 100 [10k x 100]

NumPaths 20

NumTasks 42

NumLambdas ~20

LeafTasks

20
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ScaLAPACK numpywren Slow

Algonthm (sec) (sec) down
SVD 57,919 LESNIR L 23x
QR 3,486 25,108  7.19x
GEMM 2,010 2,670 1.33x%
Cholesky 2,417 3,100 1.28x

Table 1: A comparison of ScaLAPACK vs numpywren
execution time across algorithms when run on a square
matrix with N=256K
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