
In Search of a Fast and
Efficient Serverless DAG

Engine
Benjamin Carver, Jingyuan Zhang, Ao Wang, Yue Cheng

Serverless Computing
● Emerging cloud computing platform based on the composition of fine-grained

user-defined functions

● Service provider is responsible for provisioning, scaling, and managing
resources

● Pay-per-use pricing model with fine granularity

2

Background
● Data analytics applications can be modeled as a directed acyclic graph (DAG)

based workflow
○ Nodes: fine-grained tasks
○ Edges: dependencies between tasks, often large fan-outs

● DAG workflows well-suited for serverless computing (or
Functions-as-a-Service)
○ Auto-scaling accommodates short tasks and bursty workloads
○ Pay-per-use keeps the cost of short tasks low

3

From Serverful to Serverless
● Serverful focuses on load balancing and cluster utilization

○ Bounded resources, unlimited time
○ User explicitly allocates tasks to processors
○ Servers managed by the user

● Serverless platforms provide a nearly unbounded amount of ephemeral
resources

○ Bounded time, unlimited resources
○ Cloud provider automatically allocates serverless functions to VMs
○ Servers managed by the service provider

4

AWS Lambda Constraints
● Lambda function invocation currently take 50ms on average

● Outbound-only network connectivity

● Relatively low network bandwidth

● Execution time limits (900 seconds)

● Lack of quality-of-service (QoS) control, leading to stragglers
○ e.g., cold starts

5

Existing Parallel Frameworks Using Serverless Computing

● PyWren [SoCC’17]
○ Parallelize existing Python code with AWS Lambda

● Numpywren
○ System for linear algebra built atop PyWren

● ExCamera [NSDI’17]
○ System which allows users to edit, transform, and encode videos using fine-grained serverless

functions

● gg [ATC’19]
○ Framework and command-line tools to execute “everyday applications” within cloud functions

6

Typical Approaches
● Approach 1: Queue-based Master-Worker

○ Master submits ready tasks to a queue
○ Workers are cloud functions that process tasks in

parallel, e.g., Numpywren
○ Drawbacks: cannot exploit data locality as easily;

reading from queue could become a bottleneck

● Approach 2: Centralized scheduler directly invokes
cloud functions to process ready tasks,
e.g., ExCamera

○ Drawback: centralized scheduler could become a
bottleneck for system

7

Typical Approaches
● Approach 1: Queue-based Master-Worker

○ Master submits ready tasks to a queue
○ Workers are cloud functions that process tasks in

parallel, e.g., Numpywren
○ Drawbacks: cannot exploit data locality as easily;

reading from queue could become a bottleneck

● Approach 2: Centralized scheduler directly invokes
cloud functions to process ready tasks,
e.g., ExCamera

○ Drawback: centralized scheduler could become a
bottleneck for system

8

Wukong solves these drawbacks.

Wukong

● Approach

● Architecture
○ Static Scheduler
○ Task Executors
○ Storage Manager

● Evaluation

9

Our Approach - Wukong

10

Static Scheduling Dynamic Scheduling

● Decentralized, cooperative scheduling
○ Lambda functions coordinate with each

other to execute overlapping sections of
assigned sub-DAGs

● Statically partition DAG into sub-DAGs
○ Assign each partition to a Lambda function

Task executors cooperate here!

Wukong
● Approach

● Architecture
○ Static Scheduler
○ Task Executors
○ Storage Manager

● Evaluation

11

12

Static Scheduler

13

● Partitions DAG into sub-DAG using a
depth-first search (DFS) from each leaf node.

● Assigns sub-DAGs to executors

Executors

14

● Decentralized, cooperating schedulers

● Schedule and execute tasks in assigned
sub-DAGs

● Cooperate on scheduling tasks contained in
two or more sub-DAGs

Storage Manager

15

● Performs storage operations on behalf of
Executors and Static Scheduler

● Using KV Store for intermediate data storage

Wukong
● Approach

● Architecture
○ Static Scheduler
○ Task Executors
○ Storage Manager

● Evaluation

16

Experimental Goals
● Identify and describe the factors influencing performance and scalability

● Compare WUKONG against Dask
○ Can WUKONG achieve performance comparable to Dask distributed executing on

general-purpose VMs, given the inherent limitations of AWS Lambda?

17

Experimental Setup
● Compare against Dask distributed running on two different setups.

○ 5-node EC2 cluster of t2.2xlarge VMs
○ Laptop

■ Windows 7 64-bit
■ Intel Core i5-6200U CPU @ 2.30GHz
■ 8GB RAM

● Wukong Static Scheduler, KV Store, and KV Store Proxy running on
c5.18xlarge EC2 VMs.

● Task Executor allocated 3GB memory with timeout set to two minutes.

18

Four DAG Applications
● Microbenchmark

○ Tree Reduction: repeatedly add adjacent elements of an array until a single value remains

● Linear Algebra
○ General Matrix Multiplication (GEMM)

■ 10,000 × 10,000 and 25,000 × 25,000
○ Singular Value Decomposition (SVD)

■ n × n matrix and a tall-and-skinny matrix, varying sizes

● Machine Learning
○ Support Vector Classification (SVC)

■ 100,000 - 800,000 samples

19

Tree Reduction

20

Tree Reduction with Delays

21

General Matrix Multiplication (GEMM) and Support
Vector Classification (SVC)

GEMM SVC

22

Singular Value Decomposition (SVD) - “Tall and Skinny”

23

SVD tall-and-skinny

X = da.random.random((200000, 100), chunks=(10000, 100))
u, s, v = da.linalg.svd(X)
v.compute() # Begin execution

Singular Value Decomposition - “n × n”

24

SVD-Compressed (rank 5) n × n

X = da.random.random((10000, 10000), chunks=(2000, 2000))
u, s, v = da.linalg.svd_compressed(X, k=5)
v.compute() # Begin execution

Factors Influencing Performance

25

Conclusion
● Serverless platform introduces unique challenges and opportunities

● Decentralization provides a large performance increase
○ Data locality and minimizing network overhead are also important to performance

● WUKONG achieves performance comparable to serverful Dask distributed
running on general-purpose EC2 VMs

○ Improves performance by as much as 3.1X as problem size increases

26

Thank you!
Questions?

Contact: Benjamin Carver - bcarver2@gmu.edu

GitHub: https://github.com/mason-leap-lab/Wukong

27

https://github.com/mason-leap-lab/Wukong

28

SVD 50,000 × 50,000 CDF Plot

SVD n × n with “ideal storage”

29

30

SVD Phase #2 10k x 10k
[2k x 2k]

25k x 25k
[2k x 2k]

50k x 50k
[5k x 5k]

100k x 100k
[5k x 5k]

256k x 256k
[5k x 5k]

NumPaths 95 565 345 1309 8376

NumTasks 172 800 507 1727 10509

NumLambdas ~84 ~480 ~295 ~1082 8267 to
10511

LeafTasks 30 182 110 420 2756

SVD Phase #1 200k x 100 [10k x 100]

NumPaths 20

NumTasks 42

NumLambdas ~20

LeafTasks 20

31

