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Applying Machine Learning to Understand Write
Performance of Large-scale Parallel Filesystems

e Problem

— Understand the write performance of HPC applications running on
large-scale systems

o Confribution
— Built accurate ML models for predicting the |/O write performance
— Interpreted mulfi-stage write behaviors of large-scale |/O subsystems

e Impact

- Demonstrated that ML can be applied to predict the write
performance of large-scale |/O subsystems

— Delivered a generic solution applicable to various large-scale |/O

subsystems and tfechnologies
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Motivation: Reduce the Write Cost

o Configure write burst size/rate tradeoffs
« Guide I/O middleware (e.g., ROMIO) to adapt write patterns

e Inform system job schedulers to yield tighter/better estimates of
/O cost and application runtime
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Related Works and Our Solution

e |/O performance studies
— Profiling supercomputer I/O subsystems under production loads
— Darshan toolkit
- Statistical benchmarking

e |/O middleware systems
— ROMIO, ADIOS

« ML in I/O performance prediction
— Tune I/O parameters at application level
- Learn I/O patterns from job logs and system monitoring data

e Qur Solution

— First ML work to predict write performance of large-scale parallel filesystems based on
application write patterns, system architecture, and configurations
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Typical Scientific Applications

- HPC codes compute « A generic example: XGC
for a Iong fime at Iarge - Evaluate physical equations iteratively
scales over space:. compute cost is

predictable

« Produce write bursts - 4 types of bursts with different write

that stall Opp“COﬂOﬂ frequencies and burst sizes:
ﬂOnS Clnd e state snapshots: 500MB to 1.2GB

?XGCU . ) « diagnostic analysis bursts: 1MB — 400MB
ImquT d ppllCOTlOﬂ « Bursts are stored as independent files
runtime — Write stalls comprise 7-20% of run fime
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Target I/O systems

e Titan and Spider 2 at OLCF/ORNL
— Cray XK7
— Lustre filesystem

e« Cetus and Mira-FS1at ALCF/ANL
- IBM Blue Gene/Q
— GPFS filesystem

< Metadata
E _—_ Server

Supercomputer Storage System
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Challenges

« High performance variability
e Limited filesystem visibility for end-users
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High Performance Variability

1. CDFs of write performance variations
on Titan and Cetus.
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QOur Approach

e Highly variable, but reverts to mean over time
— Model the mean performance
— Effectively address the repeated 1/O writes and aggregate impact

e Limited visibility for end users
— Extract features from write patterns and system architecture and configurations

e Inferference
— Address noise as features

e ML solution
-~ Convergence-guaranteed sampling method
- Lasso models
- Systematic ML methodology
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End-to-end I/O Write Path

Metadata
E —  Server

Client IJ l/| Server Target

Each Target is
a RAID array.

Spider 2
(Atlas1 and 2)

- Example:
- - Stripe_Count=4

Starting_OST=23

Titan

Burst o

Striping

Burst o Server,; Server,, Server,; Servery
L L L L
Target,; Target,, Target,; Target,s
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Extract Features

e Insight: infer end-to-end burst absorption time based on
performance-related parameters (write load, load skew,
resources in use) at each stage

e Collectable performance-related parameters on Titan and
Cetus

e Predictable performance-related parameters on Spider 2
and Mira-FS1

e Positive and inverse forms of performance-related
parameters on separate stages, adjacent stages, and noise

* Titan/Spider 2: 41 features; Cetus/Mira-FS1: 30 features
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Systematic Machine Learning Approach

In each fraining set

For each
model

Search for the model with
minimum MSE from the 255 Lasso
BEST < models each for 1 training set

MODEL

%OAK RIDGE

National Laboratory




Experiments

e Train models on a small scale data set

- 3,465 (Titan) and 4,715 (Cetus) converged samples collected with
multiple IOR benchmarks on the scale of 1-128 compute nodes

e Evaluate models on medium scale

- 668 (Titan) and 874 (Cetus) converged samples produced by 200 -512
compute nodes

e Evaluation criteria
— Accuracy of the best model
— Effectiveness of features
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Reported 4 models

* LASSOpest

— With minimum Mean Square Error from 255 Lasso models across the
training set candidates

e LASSOp4se
— The Lasso model frained on the write scales of 1-128 compute nodes

i LiﬂeCJI‘beSf

— With minimum Mean Square Error from 255 Linear models across the
training set candidates

e Linear,ye
— The Linear model trained on the write scales of 1-128 compute nodes
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Results on Titan and Cetus

test set with 200, 256 nodes
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test set with 400, 512 nodes
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Results on Titan and Cetus

Lasso_,.g is highly accurate and
the best model
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Conclusions

* Problem
— Understand the I/O write performance of large-scale supercomputers

e Our Solution
- Systematic ML approach with Lasso

- Modeling the mean performance, extracting features from application write patterns,
system architecture and configurations, convergence-guaranteed sampling

e Findings
— LassOpest 1S the most accurate model for both Titan and Cetus

— Most effective features are load skew in supercomputers and resources in use on the
system side

o Applicabllity
- Lasso models, features: Lustre, GPFS deployment
- Systematic modeling method: generic supercomputer I/O subsystems
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