
Enabling Transparent Asynchronous I/O
using Background Threads

● Synchronous
○ Code executes in sequence.
○ Computation is blocked by I/O, waste system resources.

● Asynchronous
○ Code may execute out of order.
○ I/O is non-blocking, can overlap with computation.

HPC I/O

Synchronous vs. Asynchronous

Sync

Async

Existing Asynchronous I/O Solutions

- POSIX I/O: aio_*
- MPI-IO: MPI_File_i*

- ADIOS/DataSpaces
- PDC (Proactive Data Containers)

Requires extra server processes

Limited number of low level
asynchronous APIs

Manual dependency management

Asynchronous I/O Design Goals

● Effective to execute all I/O operations asynchronously.

● Requires no additional resources (e.g. server processes).

● Automatic data dependency management.

● Minimal application code changes.

Implicit Background Thread Approach

● Transparent from the application, no major code changes.

● Execute I/O operations in the background thread.
○ Allow application to queue a number of operations.
○ Start execution when application is not busy issuing I/O requests.

● Lightweight and low overhead for all I/O operations.

● No need to launch and maintain extra server processes.

Dependency management
Start

Application thread

File Open

Create Obj

Write Obj

Compute /
File Close

End

Asynchronous I/O Initialization
Start

App status
check

Background thread

App
thread
idle?

No

Task
Execution

Yes

End

Task Queue

Asynchronous I/O Finalize

Queue Management

● Regular task
● Dependent task
● Collective task

Dependency management

● File create/open execute first.

● File close waits for all existing tasks to finish.

● Any read/write operations execute after prior write to same object, in
app’s order.

● Any write executes after prior reads of same object, in app’s order.

● Collective operations, in order, one at a time.

HDF5 Implementation

● VOL connector

● HDF5 I/O operations

● Additional functions

● Background thread w/ Argobots

● Error reporting

Virtual Object Layer
● HDF5 data model and API.
● Switch I/O implementation.

Enable by:
● Environmental variable, or
● H5Pset_vol_async()

HDF5 Implementation

● VOL connector

● HDF5 I/O operations

● Additional functions

● Background thread w/ Argobots

● Error reporting

Metadata operations
● Initiation: create, open.
● Modification: extend dimension.
● Query: get datatype.
● Close: close the file.

Raw data operations
● Read and write.

HDF5 Implementation

● VOL connector

● HDF5 I/O operations

● Additional functions

● Background thread w/ Argobots

● Error reporting

● H5Pset_vol_async
● H5Pset_dxpl_async_cp_limit
● H5Dtest
● H5Dwait
● H5Ftest
● H5Fwait

HDF5 Implementation

● VOL connector

● HDF5 I/O operations

● Additional functions

● Background thread w/ Argobots

● Error handling

Experimental Setup

System Cori @ NERSC

Benchmarks

Single process
Multiple process
Workloads

- Metadata heavy
- Raw data heavy
- Mixed

I/O kernels VPIC-IO, time-series plasma physics particle data write
BD-CATS-IO, time-series particle data read, analysis

Single Process - No Computation (Overhead)

Overhead
5% average

Single Process - With Computation

Speedup
 2 - 9X

Multiple Process - Metadata Intensive Read

Speedup
1.1 - 3.5X

Multiple Process - Metadata Intensive Write

Speedup
1.1 - 2.1X

Multiple Process - VPIC-IO

Speedup
 5 - 7X

Multiple Process - BD-CATS-IO

Speedup
 5 - 9X

Conclusion

● An asynchronous I/O framework
○ Highly effective and low overhead.
○ Support all I/O operations.
○ Require no additional server processes.
○ Transparent from application.

● Future work
○ Apply this work to more applications and I/O libraries, further performance optimization.
○ “Event tokens” for explicit tracking and controlling the asynchronous I/O tasks.

Thanks!
Questions?

