Towards Physical Design
Management in Storage Systems

Kathryn Dahlgren?, Jeff LeFevre', Ashay Shirwadkar?,

Ken lizawa3, Aldrin Montana?!, Peter Alvaro!, Carlos Maltzahn'
UC Santa Cruz!, UC Riverside?, Fujitsu Labs Ltd.>

PDSW'19

Baskin
Engineering W

The Problem

Rapid evolution of new storage devices and architectures

— Has significant impact on the software stack

Demise of Moore’s Law may result in performance
improvements driven mainly by architecture changes

— Previous improvements required little change to stacks
Can be difficult to take full advantage of new device-specific
functionality without significant application changes

— Frequent changes to stacks quickly becomes unaffordable
Feasible stacks will need to move device-specific functionality

closer to devices
_Baskin W
Engineering

Device-specific functionality

 One example is physical design (data management community)
— Refers to physical data model and secondary data structures
— Also includes how physical data is mapped to storage
abstractions (files, blocks, objects)
* Physical design transformations can have significant perf benefits
— Makes assumptions about underlying storage devices
* e.g., relative performance of sequential vs. random access
* Currently, physical design resides with the application or DBA
— Optimizes for a workload with specific (fairly static) hardware

Baskin
Engineering W

More Complications...

e Storage hierarchies are deepening - multiple tiers
— Spinning media, flash, non-volatile memory
* Dynamic movement of data between tiers
— Benefits of a physical design may depend on which tier the
data currently resides
* Physical design assumptions might not adequately reflect
— New devices, heterogeneity of devices, or changing
architectures and workloads

Baskin
Engineering W

Our Approach

Physical design should be managed in storage systems

— Isolate applications and middleware from the impact of

storage architectural changes

 We identify two key enabling technologies

1.

2.

Emerging computational storage makes it possible to carry
out some data processing in storage

Embedding of fast serialization libraries such as Google
Flatbuffers and Apache Arrow in storage allows storing and
transforming structured data transparently to the application

Baskin
Engineering W

Physical design and computational storage

* Physical design management in storage systems leverages
computational storage but is not subsumed by it
— Transformations are performed by computational storage
layer but are orchestrated by storage clients
* Extends computational storage with physical data transformation:
— Including data formats, data orientations, data
(re-)partitioning, data indexing
— Can be on-the-fly or out-of-band
— Can be incremental...

Baskin
Engineering W

Orchestration of Transformations

* Transformations are beneficial but potentially long-running
— Orchestration is an interesting research area
 Transformation plan execution space is large
— Even given a source and target physical design
* May prefer to create benefit as quickly as possible
— What intermediate steps to benefit production workloads?
— What resources to dedicate for plan execution?

Baskin
Engineering W

How do applications take advantage?

Connect the application to new storage capabilities

— Physical design in storage requires changes to layers above

— Data access libraries, data management systems

Data management systems already have external table facilities

— Foreign tables, external data source, many others

Offloads management of data to an external system

— Offloading to distributed object storage may increase
scalability

Scientific file formats such as HDF5 have external facilities

— Virtual Object Layer

Baskin
Engineering W

Contributions

Introduce and make the case for physical design management in
storage systems

|dentification of research challenges

Provide a prototype implementation in Ceph object storage
Initial experiments at a replicable scale using Cloudlab

Baskin
Engineering W

Physical Design Management

 Map a dataset to storage devices
— Including metadata, views, indexes, data format, distribution
* Physical design management problem
— Identifying and executing a dataset transformation that will
reduce workload processing cost without changing logical
structure of dataset
* Physical design has topology and geometry
— Topology of logical structure is invariant under
transformations

— Geometry is particular mapping of topology to storage
devices Baskin [l J

Engineering

Design management in practice

* |dentify and execute transformations

— Offline or online execution
* Execute transformations transparently to applications

— Access is adapted to utilize a new design

— 0Old designs deleted or retained for redundancy (row to col)
* May be executed in parallel

— Independent of other transformations

— DAG for dependent transformations

Baskin
Engineering W

Physical Design Management Overview

Physical Design
Management

Orchestration Storage Clients

Storage Servers

transformation

Distributed transformations

Physical Designs

i 12
CROSS maniin

Research Challenges

Transformation execution

— Managing resources for transform v. workload execution

— How to navigate trade-off of transformation time v. workload
performance?

Transformation schedule

— Slow roll-out with few resources scheduled initially?

— Dedicate more resources earlier to realize benefits sooner?

Managing metadata of transformation status so that workload

can take advantage

Baskin
Engineering W

Using Object Storage

* Ceph distributed object storage

— File, block, object interfaces

— Embedded KV store on each server (indexing/metadata)
* Extensible object methods

— Users can create custom

object classes and methods

— [src/cls/*
— Cpp and lua interfaces
e Users already doing this

) Baski
Sevilla et. al 2016 Engine%sm:g W

Using Object Storage

* Ceph distributed object storage
— File, block, object interfaces

— Embedded KV store on each server (indexing/metadata)
* Extensible object methods

160
— Users can create custom 0 o s i
120 - — LOC(C++)
object classes and methods : =
— [src/cls/* A I i
— Cpp and lua interfaces e /N I I
e Users already doing this " oo 1 Jdd s
2010 2011 2012 2 14 2015 2016

Sevilla et. al 2016

Lines of Code

Serialization Libraries

We embed usage of serialization libraries into our custom object

classes within Ceph

— Can use APIs to process data locally

Google Flatbuffers (used for our row oriented layout)

— Ordered contiguous sequence of bytes

— Access individual elements without deserializing entire
structure

— Also use Flexbuffers

Apache Arrow (used for our col oriented layout)

— Optimized in-mem column-wise storage with compression

Baskin
Engineering

Local v. Distributed transformations

* Local transform is object-local
— no network traffic

=

Baskin
Engineering W

Local v. Distributed transformations

* Local transform is object-local
— no network traffic

* Primary - reorgs original data only

Baskin
Engineering W

Local v. Distributed transformations

* Local transform is object-local
— no network traffic
* Primary - reorgs original data only
* Secondary - creates auxiliary data

/\
@ : (indexes, new metadata)

Baskin
Engineering W

Local v. Distributed transformations

* Distributed transform is cross-object
— Network traffic within storage layer only

ABC

>
e—

Baski
\ \ Engine?asrir:gw

Physical Design Management Overview

Physical Design
Management

Orchestration Storage Clients

Storage Servers

Physical Designs

21

Implementation

* Created Ceph object classes (/src/scls/tabular)
— Included Flatbuffers and Arrow Libraries in our source
— Select, Project, Aggregate methods

* Local transformations use our object methods

e Distributed transformations use Ceph’s existing copy_from()
function (modified) along with our object methods

Baskin
Engineering W

Evaluation

* Datasets and workloads

— TPC-H lineitem table

— loT inspired data with 100 cols of integers

— Select (1,10,100%), project, transform local and distributed
* Execution Environment

— Cloudlab (c220g5 nodes) 40 cores, HDD, 10GbE

— 1 client server

— 4,8 storage servers (OSDs)

— Ceph Luminous with our extensions (SkyhookDM project)

— Avg of 3x execution, clearing FS cache each time
En gin%?asrmg W

Dataset Sizes and Formats

Schema Format Size in GB | Number of rows
LINEITEM | flatbuffer 210 750 million
LINEITEM | arrow 103 750 million
LINEITEM | raw 100 750 million
100CcoLS flatbuffer 85 250 million
100COLS arrow 188 250 million
100COLS raw 100 250 million

We create 10,000 objects of uniform size, based on 100GB raw data

Baskin
Engineering W

SELECT 1,10,100% (row format)

FLATBUFFER-FLEXBUFFER FORMAT

B8 NO PROCESSING B SELECTIVITY 1% 10% 100%

200
100
U

storage-side processing client-side processing

Execution Time (seconds)

Baskin 25
Engineering W

SeLECT 1,10,100% (col format)

ARROW FORMAT

@ NO PROCESSING B SELECTIVITY 1% 10% 100%

Execution Time (seconds)

storage-side processing client-side processing

Baskin 26
Engineering W

CPU Resource Usage (SELECT 1%)

CLIENT MACHINE - STORAGE MACHINE

CLIENT-SIDE PROCESSING
(CPU)

PERCENT
o =)
PERCENT

0 0 Laaa i A bebbbbdbbii Ay P i
0 20 40 60 0 20 40 60

ELAPSED TIME (secon ds) ELAPSED TIME (secon ds)

Engineering Wl

CPU Resource Usage (SELECT 1%)

20 CLIENT MACHINE 75 STORAGE MACHINE
15 1
CLIENT-SIDE PROCESSING 5 w0 5 0
(CPU) SR % g
() ek 0 L iy, bbbty Pty s iia A
0 20 40 60 0 20 40 60
ELAPSED TIME (seconds) ELAPSED TIME (seconds)
) CLIENT MACHINE . STORAGE MACHINE
15 15
SERVER-SIDE PROCESSING - -
(CPU) % 10 g 10
o . o
bbb kbbbt — 0
0 20 40 60 0 20 40 60
ELAPSED TIME (seconds) ELAPSED TIME (seconds)

Engineering Wil

NET Resource Usage (SELECT 1%)

CLIENT-SIDE PROCESSING
(NET)

MB

1,500

1,000

500

CLIENT MACHINE

== RECV (MB) == SEND (MB)

Yaesaw
s Taugsav
. LA PP - .

20 40 60

ELAPSED TIME (seconds)

MB

STORAGE MACHINE

*= RECV (MB) == SEND (MB)

1,500
1,000
500
0 /'/\M‘M’,\'\/M
0 20 40 60

ELAPSED TIME (seconds)

29
Engineering Wl

NET Resource Usage (SELECT 1%)

CLIENT-SIDE PROCESSING
(NET)

SERVER-SIDE PROCESSING
(NET)

MB

MB

1,500

1,000

500

1,500

1,000

500

CLIENT MACHINE

== RECV (MB) == SEND (MB)

wsVunaw
Ve Taagsav
- R avav,

0 20 40 60
ELAPSED TIME (seconds)

== RECV (MB) == SEND (MB)

0 20 40 60

ELAPSED TIME (seconds)

MB

MB

STORAGE MACHINE

*= RECV (MB) == SEND (MB)

1,500
1,000
500

. NN~ AN

0 20 40 60

ELAPSED TIME (seconds)
== RECV (MB) == SEND (MB)

1,500
1,000
500
0

0 20 40 60

ELAPSED TIME (seconds)

waonm
Engineering |

30

Execution Time (seconds)

200

150

100

o
o

Transform time

Transform Row to Column Format

Local Distributed Client-side

' _Baskin
2 Engineering

[

31

Transform with PROJECT 1 column

SELECT extended_price FROM lineitem

Execution Time (seconds)

@ Before transform W After transform
After transform with PROJECT extended_price

Baskin 32
Engineering W

Conclusion

Physical desigh management utilizes computational storage

— but affects both the type of computations and their
performance due to design reorganizations

Implemented custom object classes in Ceph with fast

serialization libraries and data semantics

— Supports both processing and transformation

— Objects can process and reorganize themselves

Evaluated performance and resource usage before and after

transformations

Showed flexibility over different datasets, formats, selectivities
_Baskinw
Engineering

Thank you

* Acknowledgements
— Center for Research in Open Source Software at UCSC
— NSF Grant OAC-1836650, CNS-1764102, CNS-1705021

Baskin
Engineering W

Backup slides

Execution Time (seconds)

1,000

Scalability

FLATBUFFER-FLEXBUFFER FORMAT

@ NO PROCESSING @ SELECTIVITY 1%

Number of Storage Servers (OSDs)

16

) Engineering

36

V. Client-side transformations

 Client transform reads and writes data between
client and storage

Client Application

Baskin
Engineering W

