

### Fault-Tolerant Deep Learning Cache with Hash Ring for Load Balancing in HPC Systems

Seoyeong Lee<sup>1</sup>, Awais Khan<sup>2</sup>, Yoochan Kim<sup>1</sup>, Junghwan Park<sup>1</sup>, Soon Hwang<sup>1</sup>, Jae-Kook Lee<sup>3</sup>, Taeyoung Hong<sup>3</sup>, Christopher Zimmer<sup>2</sup>, Youngjae Kim<sup>1</sup>

<sup>1</sup> Dept. of Computer Science and Engineering, Sogang University <sup>2</sup> Oak Ridge National Laboratory, <sup>3</sup> KISTI,



2024 9th International Workshop on Parallel Data Storage, held in conjunction with SC24, Nov 17–22, 2024, Atlanta, GA



### Contents

- Background
- Problem Definition
- Design & Implementation
- Evaluation
- Conclusion







#### Distributed Deep Learning in HPC

- The Data Parallel Approach
  - Replicates the deep learning model across nodes while distributing the training dataset among all nodes. *Parameter update*





### Distributed Deep Learning in HPC

- Three key aspects of Distributed Deep Learning
  - I/O, Computation, Communication
- Most prior research efforts have concentrated on improving computation and communication.





#### Distributed Deep Learning in HPC

- However, the optimizations in computation and communication, along with the development of modern computational accelerators and network technologies, have shifted the bottleneck towards I/O.
- I/O accounts for 67-85% of total training time<sup>[1]</sup>.
  - Training ResNet50 on ImageNet: 85% of training runtime is IO overhead



[1] N. Dryden, R. Böhringer, T. Ben-Nun, and T. Hoefler, "Clairvoyant Prefetching for Distributed Machine Learning I/O," Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), 2021.



#### Characteristics of Deep Learning Image Dataset

#### "Large Number of Small Files"

- ImageNet-1K: 1.28 million images (-150KB)
- ImageNet-21K: 11 million images (-163KB)
- **OpenImages:** 9 million images (-150KB)
- Google Landmarks Dataset v2: 5 million images (-200KB)
- Places365: 10 million images (-150KB)
- The HPC I/O subsystem is *not designed to efficiently handle the large-scale data I/O access required by deep learning frameworks.*



### Optimizing I/O for Deep Learning Workloads

- **NoPFS**<sup>[1]</sup>
  - Optimizes prefetching and caching by predicting data access patterns, reducing latency in training I/O.
- **DeepIO**<sup>[2]</sup>
  - Minimizes backend storage reads by keeping data in memory, focusing on reducing read latency and boosting I/O efficiency for distributed training.
- HVAC<sup>[3]</sup>
  - Caches data on node-local NVMe, specifically reducing repetitive I/O reads during training.

[2] Y. Zhu, "Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems," Proceedings of the IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 2018.
 [3] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.



### HVAC: High-Velocity AI Cache

- *HVAC*, a transparent read-only caching layer for large-scale supercomputers using node-local NVMe.
- Scalability
  - Designed to scale across thousands of compute nodes on leadership-class supercomputers like Summit and Frontier.
  - Avoids additional metadata bottlenecks and storage overhead.

#### Client-Server Library Architecture

- Intercepts <open-read-close> file I/O operations via LD\_PRELOAD using a shared library approach.
- Data is cached to distributed node-local storage.
- Utilizes distributed hashing to determine the location of cached content across nodes.  $\rightarrow$  *No Repeated Access to PFS*



#### **HVAC Overview**

#### • HVAC Server

- Builds a caching layer on *node-local fast storage.*
- Handles system calls forwarded by HVAC clients.
- Reads files from node-local storage if available, or retrieves files from the PFS and caches them to node-local storage.

#### • HVAC Client

 Intercepts system calls directed to the PFS and redirects them to the HVAC server.







### Increasing Node Failures in HPC and AI Workloads

- Node Failure Rates Rise with Complexity
  - Larger, more complex HPC systems have higher node failure rates.
  - Failure rates scale with system size, increasing linearly as more processors are added<sup>[4]</sup>.



#### • Intensive Workloads Increase Failure Probability

- High-demand tasks, such as large-scale deep learning jobs, also increase the risk of failure.
- Running multiple nodes for deep learning exacerbates the likelihood of failure event.





Increasing Node Failures in HPC and AI Workloads

Node Failure Rates Rise with Complexity



# However, HVAC currently *lacks fault tolerance support*, which limits its resilience in handling node failures.

the likelihood of failure event.





### Failures in HVAC

- Even a single node failure can halt the entire training process, despite fault-tolerance support in the DL framework.
  - E.g. Elastic Scaling *Horovod Elastic Run, MPI ULFM*
- This happens because I/O flows are controlled by HVAC.

#### $\rightarrow$ The job must be restarted.



### Failures in HVAC

• Even a single node failure can halt the entire training process,

# Therefore, it is crucial to *ensure fault tolerance* in the *HVAC layer* to prevent training interruptions!



#### Naïve Approach

- Because HVAC functions as a caching layer, the original data resides in the PFS.
- I/O requests to failed nodes  $\rightarrow$  redirected to PFS!





#### I/O Redirection to PFS





#### Limitations of PFS I/O Redirection

"Frequent future PFS access"

- 22 mins per epoch x 5 epochs → *nearly 2 hours*
- Partial data reads from PFS still cause delays





### Limitations of PFS I/O Redirection

#### "Frequent future PFS access"



- 22 mins per epoch x 5 epochs → *nearly 2 hours*
- Partial data reads from PFS still cause delays
- Straggler Problem: Even if a few nodes access PFS, deep learning synchronization at each iteration forces other nodes to wait → reducing parallelism and scalability.



### Limitations of PFS I/O Redirection

#### "Frequent future PFS access"



- 22 mins per epoch x 5 epochs → *nearly 2 hours*
- Partial data reads from PFS still cause delays
- Straggler Problem: Even if a few nodes access PFS, deep learning synchronization at each iteration forces other nodes to wait → reducing parallelism and scalability.
- Job Time Limitations: Risk of exceeding pre-defined job time.





#### Limitations of PFS I/O Redirection

#### "Re-caching Mechanism"

#### Read from PFS once, then access re-cached data for future requests

## • Job Time Limitations: Risk of exceeding pre-defined job time.



### Challenge: Handling Data Redistribution

- Original HVAC Implementation Static Hash Partitioning
  - Data paths are converted to key values and distributed across nodes using a modulo operation.
  - On node failure, recalculating hash values for N-1 nodes causes extensive data redistribution.





### Challenge: Handling Data Redistribution

#### Additional Hash Functions

• Reduces data movement but doesn't address multiple unpredictable failures.

#### Range Partitioning

• Can handle multiple node failures, but *balancing data distribution* remains challenging.





#### **Problem Definition**

- How can we *track data locations* that change after re-caching?
- How can we *redistribute* lost data *evenly* across remaining active nodes?





# **Design & Implementation**



#### Design of FT-HVAC

• **FT-HVAC:** An **I/O accelerated caching framework** with **fault tolerance** for large-scale distributed deep learning.



#### Design of FT-HVAC

- **FT-HVAC:** An **I/O accelerated caching framework** with **fault tolerance** for large-scale distributed deep learning.
- 1. Enable *fault tolerance* in HVAC.
- 2. Implement *data recaching* within the HVAC layer to ensure data availability and quick access during node failures.
- 3. Achieve *load-balanced* data recaching.



### Elastic Recaching with Hash Ring

• Hash Ring Mechanism



<Before Failure>

| Node Table                                   | Hash Table |               |
|----------------------------------------------|------------|---------------|
| Node 0 🛑 0.000 0.500<br>Node 1 🔵 0.375 0.875 | File A     | 0.083427<br>• |
| Node 2  0.125 0.625 Virtual nodes            | File E     | 0.293853      |



### Elastic Recaching with Hash Ring

• Hash Ring Mechanism



<Before Failure>





### Elastic Recaching with Hash Ring

• Hash Ring Mechanism



<Before Failure>



### Elastic Recaching with Hash Ring

• Hash Ring Mechanism



<After Failure>



#### **SOGANG** UNIVERSITY



## Evaluation



#### Node Failure Analysis on Frontier

- Analyzed job scheduler logs for six months following the production launch of the ORNL's Frontier cluster.
- Focused on three types of job failures: "Job Fail", "Node Fail", and "Timeout".

| Туре           | Count   | Failure ratio | <b>Overall ratio</b> |
|----------------|---------|---------------|----------------------|
| Total Jobs     | 181,933 | N/A           | 100%                 |
| Total Failures | 45,556  | 100%          | 25.04%               |
| Node Fail      | 1,174   | 2.58%         | 0.65%                |
| Timeout        | 20,464  | 44.92%        | 11.25%               |
| Job Fail       | 23,918  | 52.50%        | 13.15%               |

- **Job Fail:** Due to code errors, data/environment issues, or external malfunctions.
- Node Fail: Caused by hardware, network, software bugs, or overload.
- *Timeout:* Job exceeded set time limit, often due to complexity or resource/network constraints.



### Node Failure Analysis on Frontier

• Average Runtime of Failed Jobs on Frontier



- Failed jobs typically run for an average of **over 1 hour**, sometimes reaching **2-3 hours.**
- Long-running job failures → significant loss of computing resources and time.
- Job failures have occurred consistently on a weekly basis.



### Node Failure Analysis on Frontier

• Relationships between *types of job failures* and system variables.



(a) As the **number of nodes increases**, the rate of "**Node Failures**" **also rises**.

- E.g. With 7,750–9,300 nodes, "Node Failures" are **46.04%** of failures; including "Timeouts," they total 78.60%.
- (b) Execution time does not significantly impact the proportion of failure types.



### Node Failure Analysis on Frontier

• Relationships between *types of job failures* and system variables.



(a) As the **number of nodes increases**, the rate of "**Node Failures**" **also rises**.

• E.g. With 7,750–9,300 nodes, "Node Failures" are **46.04%** of failures; including "Timeouts," they total 78.60%.

Failures are *highly frequent* in large-scale HPC systems,

Software systems that are not designed to handle such failures are especially vulnerable, often resulting in significant, unavoidable losses

#### **Experimental Setup**

| Attribute          | Description                       |
|--------------------|-----------------------------------|
| Supercomputer      | Frontier                          |
| CPU                | AMD Trento EPYC 7A53              |
| GPU                | 8 x MI250X AMD with 64 GiB HBM    |
| Memory Capacity    | 512 GiB DDR4                      |
| Node-local Storage | 2 x 1.9 TB Samsung PM9A3 M.2 NVMe |



- Application: Cosmoflow- MLPerf HPC v0.5 benchmark
- *Framework:* Horovod Elastic Run
- Dataset: 1.3TB cosmoUniverse dataset from NERSC ExaLearn group (524,288 training samples, 65,536 validation samples).
- File System: Orion (Lustre).
- *Training Setup:* 5 epochs, with 5 random failures injected after the first epoch.



#### **Overhead Analysis**

• Comparison between the original HVAC (NoFT) and two fault-tolerant approaches (FT w/PFS, FT w/NVMe) without any failure events.



- Overhead was minimal, with a maximum of 1-minute increase.
- Overhead resulted from additional data structures and conditional checks for the fault detection algorithm.



#### **Overall Performance**

• Performance evaluation with failure events.



- Comparison to No Failure Scenario
- FT w/PFS:
  - 64 nodes: 32.2% increase in training time.
  - 1024 nodes: 68.7% increase in training time.
- FT w/NVMe:
  - 64 nodes: 12.5% increase in training time.
  - 1024 nodes: 26.7% increase in training time.



#### **Overall Performance**

Performance evaluation with failure events.



- Comparison to No Failure Scenario
- FT w/PFS:
  - 64 nodes: 32.2% increase in training time.
  - 1024 nodes: 68.7% increase in training time.
- FT w/NVMe:
  - 64 nodes: 12.5% increase in training time.

FT w/ NVMe offers reduction in training time compared with FT w/ PFS, from **14.9%** to 24.9% as the number of nodes increases, as NVMe accesses the PFS only once following a failure, while FT with PFS requires repeated accesses.



#### Load Balance Analysis

• In a 1024-node configuration with **100 virtual nodes** per physical node, a single node failure redistributes data to an average of **80 nodes**.



#### Load Balance Analysis

• Analysis of varying virtual nodes per physical node to assess data distribution during failures.



- Simulation Setup: Conducted 500 simulations considering a 1024-node configuration.
- The Receiver Node metric represents the number of nodes receiving redistributed data.
- Increasing the number of virtual nodes improves data distribution but efficiency plateaus beyond 500.



### Conclusion

- Node failures are *common* in leading-edge supercomputers.
- Such failures pose a *high risk to DL applications* on large-scale systems.
- FT-HVAC is a *fault-tolerant, I/O-accelerated caching framework* for distributed DL.
- FT-HVAC has demonstrated effective fault handling across 1024 nodes.
- The Elastic Recaching approach reduced training time by up to 24.9% compared to the I/O redirection method, while maintaining effective load balancing.



#### Questions?

- Seoyeong Lee / <u>sylee2519@gmail.com</u>
- Data-Intensive Computing & Systems Laboratory / https://discos.sogang.ac.kr



<Camera-ready paper>