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Distributed Deep Learning in HPC

• The Data Parallel Approach 
• Replicates the deep learning model across nodes while distributing 

the training dataset among all nodes.
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Distributed Deep Learning in HPC

• Three key aspects of Distributed Deep Learning
• I/O, Computation, Communication

• Most prior research efforts have concentrated on improving computation 
and communication.

Communication

Computation
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[1] N. Dryden, R. Böhringer, T. Ben-Nun, and T. Hoefler, "Clairvoyant Prefetching for Distributed Machine Learning I/O," Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), 2021.

Distributed Deep Learning in HPC

• However, the optimizations in computation and communication, along 
with the development of modern computational accelerators and 
network technologies, have shifted the bottleneck towards I/O.

• I/O accounts for 67-85% of total training time[1] .
• Training ResNet50 on ImageNet: 85% of training runtime is IO overhead

67-85% of I/O

Computation

Computation
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Characteristics of Deep Learning Image Dataset

• “Large Number of Small Files”
• ImageNet-1K: 1.28 million images (-150KB)
• ImageNet-21K: 11 million images (-163KB)
• OpenImages: 9 million images (-150KB)
• Google Landmarks Dataset v2: 5 million images (-200KB)
• Places365: 10 million images (-150KB)

• The HPC I/O subsystem is not designed to efficiently handle the large-
scale data I/O access required by deep learning frameworks.
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[2] Y. Zhu, "Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems," Proceedings of the IEEE 26th International Symposium on Modeling, 
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 2018.

Optimizing I/O for Deep Learning Workloads

• NoPFS[1]

• Optimizes prefetching and caching by predicting data access patterns, reducing 
latency in training I/O.

• DeepIO[2]

• Minimizes backend storage reads by keeping data in memory, focusing on reducing 
read latency and boosting I/O efficiency for distributed training.

• HVAC[3]

• Caches data on node-local NVMe, specifically reducing repetitive I/O reads during 
training.

[3] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning Applications," 
Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.
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HVAC: High-Velocity AI Cache

• HVAC, a transparent read-only caching layer for large-scale supercomputers using 
node-local NVMe.

• Scalability
• Designed to scale across thousands of compute nodes on leadership-class 

supercomputers like Summit and Frontier.
• Avoids additional metadata bottlenecks and storage overhead.

• Client-Server Library Architecture 
• Intercepts <open-read-close> file I/O operations via LD_PRELOAD using a shared 

library approach.
• Data is cached to distributed node-local storage.
• Utilizes distributed hashing to determine the location of cached content across 

nodes. → No Repeated Access to PFS

9
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HVAC Overview

• HVAC Server
• Builds a caching layer on node-local fast 

storage.
• Handles system calls forwarded by HVAC 

clients.
• Reads files from node-local storage if 

available, or retrieves files from the PFS and 
caches them to node-local storage.

• HVAC Client
• Intercepts system calls directed to the PFS 

and redirects them to the HVAC server.
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[4] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-Performance Computing Systems," IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp. 
337-350, Oct.-Dec. 2010.

Increasing Node Failures in HPC and AI Workloads

• Node Failure Rates Rise with Complexity
• Larger, more complex HPC systems have higher node 

failure rates.
• Failure rates scale with system size, increasing linearly as 

more processors are added[4] .

• Intensive Workloads Increase Failure Probability
• High-demand tasks, such as large-scale deep learning 

jobs, also increase the risk of failure.
• Running multiple nodes for deep learning exacerbates 

the likelihood of failure event.
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Increasing Node Failures in HPC and AI Workloads

• Node Failure Rates Rise with Complexity
• Larger, more complex HPC systems have higher node 

failure rates.
• Failure rates scale with system size, increasing linearly as 

more processors are added[4] .

• Intensive Workloads Increase Failure Probability
• High-demand tasks, such as large-scale deep learning 

jobs, also increase the risk of failure.
• Running multiple nodes for deep learning exacerbates 

the likelihood of failure event.

However, HVAC currently lacks fault tolerance support, which 
limits its resilience in handling node failures.

12[4] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-Performance Computing Systems," IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp. 
337-350, Oct.-Dec. 2010.
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Failures in HVAC

• Even a single node failure can halt the entire training process, 
despite fault-tolerance support in the DL framework.

• E.g. Elastic Scaling -  Horovod Elastic Run, MPI ULFM

• This happens because I/O flows are controlled by HVAC.
→ The job must be restarted.
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Therefore, it is crucial to ensure fault tolerance in the HVAC 
layer to prevent training interruptions!
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Naïve Approach

• Because HVAC functions as a caching layer, the original data 
resides in the PFS.

• I/O requests to failed nodes → redirected to PFS!

PFS
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I/O Redirection to PFS
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Limitations of PFS I/O Redirection

• 22 mins per epoch x 5 epochs → 
nearly 2 hours 

• Partial data reads from PFS still 
cause delays
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* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning 
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022. 
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Limitations of PFS I/O Redirection

• 22 mins per epoch x 5 epochs → 
nearly 2 hours 

• Partial data reads from PFS still 
cause delays

• Straggler Problem: Even if a few 
nodes access PFS, deep learning 
synchronization at each iteration 
forces other nodes to wait → 
reducing parallelism and 
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Limitations of PFS I/O Redirection

• 22 mins per epoch x 5 epochs → 
nearly 2 hours 

• Partial data reads from PFS still 
cause delays

• Straggler Problem: Even if a few 
nodes access PFS, deep learning 
synchronization at each iteration 
forces other nodes to wait → 
reducing parallelism and 
scalability.

• Job Time Limitations: Risk of 
exceeding pre-defined job time.
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Limitations of PFS I/O Redirection
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“Frequent future PFS access”

“Re-caching Mechanism”
Read from PFS once, then access re-cached data for future requests
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Challenge: Handling Data Redistribution

• Original HVAC Implementation - Static Hash Partitioning
• Data paths are converted to key values and distributed across nodes using a modulo 

operation.
• On node failure, recalculating hash values for N−1 nodes causes extensive data 

redistribution.

PFS PFS
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Challenge: Handling Data Redistribution

• Additional Hash Functions
• Reduces data movement but doesn’t address multiple unpredictable failures.

• Range Partitioning
• Can handle multiple node failures, but balancing data distribution remains 

challenging.

“Load Imbalance”

22
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Problem Definition

• How can we track data locations that change after re-caching?
• How can we redistribute lost data evenly across remaining active nodes?

23
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Design & Implementation
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Design of FT-HVAC

• FT-HVAC: An I/O accelerated caching framework with fault 
tolerance for large-scale distributed deep learning.

25
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Design of FT-HVAC

• FT-HVAC: An I/O accelerated caching framework with fault 
tolerance for large-scale distributed deep learning.

1. Enable fault tolerance in HVAC.
2. Implement data recaching within the HVAC layer to ensure 

data availability and quick access during node failures.
3. Achieve load-balanced data recaching.
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Elastic Recaching with Hash Ring

• Hash Ring Mechanism
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring

• Hash Ring Mechanism
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring

PFS

HVAC 
Server 1

HVAC 
Client

DL App

HVAC 
Server 2

HVAC 
Client

DL App

HVAC 
Server 3

HVAC 
Client

DL App

39

Design



SOGANG UNIVERSITY

Evaluation

40
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Node Failure Analysis on Frontier

• Analyzed job scheduler logs for six months following the production 
launch of the ORNL’s Frontier cluster.

• Focused on three types of job failures: “Job Fail”, “Node Fail”, and 
“Timeout”.

• Job Fail: Due to code errors, 
data/environment issues, or external 
malfunctions.

• Node Fail: Caused by hardware, 
network, software bugs, or overload.

• Timeout: Job exceeded set time limit, 
often due to complexity or 
resource/network constraints.
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Node Failure Analysis on Frontier

• Average Runtime of Failed Jobs on Frontier

• Failed jobs typically run for an 
average of over 1 hour, 
sometimes reaching 2-3 hours.

• Long-running job failures → 
significant loss of computing 
resources and time.

• Job failures have occurred 
consistently on a weekly basis.
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Node Failure Analysis on Frontier

• Relationships between types of job failures and system variables.

• (a) As the number of nodes 
increases, the rate of "Node 
Failures" also rises.

• E.g. With 7,750–9,300 nodes, 
"Node Failures" are 46.04% of 
failures; including "Timeouts," 
they total 78.60%.

• (b) Execution time does not 
significantly impact the 
proportion of failure types.
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Node Failure Analysis on Frontier

• Relationships between types of job failures and system variables.

• (a) As the number of nodes 
increases, the rate of "Node 
Failures" also rises.

• E.g. With 7,750–9,300 nodes, 
"Node Failures" are 46.04% of 
failures; including "Timeouts," 
they total 78.60%.

• (b) Execution time does not 
significantly impact the 
proportion of failure types.

Failures are highly frequent in large-scale HPC systems,
Software systems that are not designed to handle such failures are especially 

vulnerable, often resulting in significant, unavoidable losses
44
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Experimental Setup

• Application: Cosmoflow- MLPerf 
HPC v0.5 benchmark

• Framework: Horovod Elastic Run
• Dataset: 1.3TB cosmoUniverse 

dataset from NERSC ExaLearn 
group (524,288 training samples, 
65,536 validation samples).

• File System: Orion (Lustre).
• Training Setup: 5 epochs, with 5 

random failures injected after the 
first epoch.
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Overhead Analysis

• Comparison between the original HVAC (NoFT) and two fault-tolerant 
approaches (FT w/PFS, FT w/NVMe) without any failure events. 

• Overhead was minimal, with a maximum of 
1-minute increase.

• Overhead resulted from additional data 
structures and conditional checks for the 
fault detection algorithm.
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Overall Performance

• Performance evaluation with failure events.

• Comparison to No Failure Scenario
• FT w/PFS:

• 64 nodes: 32.2% increase in training time.

• 1024 nodes: 68.7% increase in training time.

• FT w/NVMe:
• 64 nodes: 12.5% increase in training time.

• 1024 nodes: 26.7% increase in training time.
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Overall Performance

• Performance evaluation with failure events.

• Comparison to No Failure Scenario
• FT w/PFS:

• 64 nodes: 32.2% increase in training time.

• 1024 nodes: 68.7% increase in training time.

• FT w/NVMe:
• 64 nodes: 12.5% increase in training time.

• 1024 nodes: 26.7% increase in training time.
FT w/ NVMe offers reduction in training time compared with FT w/ PFS, from 14.9% 

to 24.9% as the number of nodes increases, as NVMe accesses the PFS only once 
following a failure, while FT with PFS requires repeated accesses.
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Load Balance Analysis

49

Evaluation

• In a 1024-node configuration with 100 virtual nodes per physical node, a 
single node failure redistributes data to an average of 80 nodes.
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Load Balance Analysis

• Simulation Setup: Conducted 500 
simulations considering a 1024-node 
configuration.

• The Receiver Node metric represents 
the number of nodes receiving 
redistributed data.

• Increasing the number of virtual 
nodes improves data distribution but 
efficiency plateaus beyond 500.
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• Analysis of varying virtual nodes per physical node to assess data 
distribution during failures.
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Conclusion

• Node failures are common in leading-edge supercomputers.
• Such failures pose a high risk to DL applications on large-scale systems.
• FT-HVAC is a fault-tolerant, I/O-accelerated caching framework for 

distributed DL.
• FT-HVAC has demonstrated effective fault handling across 1024 nodes.
• The Elastic Recaching approach reduced training time by up to 24.9% 

compared to the I/O redirection method, while maintaining effective 
load balancing.
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Questions?

• Seoyeong Lee / sylee2519@gmail.com
• Data-Intensive Computing & Systems Laboratory / 

https://discos.sogang.ac.kr
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