
SOGANG UNIVERSITY

Fault-Tolerant Deep Learning Cache with
Hash Ring for Load Balancing in HPC Systems

Seoyeong Lee¹, Awais Khan², Yoochan Kim¹, Junghwan Park¹, Soon Hwang¹,

Jae-Kook Lee³, Taeyoung Hong³, Christopher Zimmer², Youngjae Kim¹

¹ Dept. of Computer Science and Engineering, Sogang University

² Oak Ridge National Laboratory, ³ KISTI,

2024 9th International Workshop on Parallel Data Storage, held in conjunction with SC24, Nov 17–22, 2024, Atlanta, GA

SOGANG UNIVERSITY

• Background

• Problem Definition

• Design & Implementation

• Evaluation

• Conclusion

Contents

2

SOGANG UNIVERSITY

Background

3

SOGANG UNIVERSITY

Data Set
Mini
batch
Mini
batch
Mini

batch

b0

b1

b2

GPU

GPU

GPU

B
a

c
k

e
n

d
 C

o
m

m
u

n
ic

a
ti

o
n“Batch Partitioning”

Parameter update

Model Replication

Distributed Deep Learning in HPC

• The Data Parallel Approach
• Replicates the deep learning model across nodes while distributing

the training dataset among all nodes.

4

Background

SOGANG UNIVERSITY

Compute Node

Storage

Parameter update

Data I/O Data I/O

Compute NodeCompute Node

Backend Communication

Distributed Deep Learning in HPC

• Three key aspects of Distributed Deep Learning
• I/O, Computation, Communication

• Most prior research efforts have concentrated on improving computation
and communication.

Communication

Computation

I/O

5

Background

SOGANG UNIVERSITY

[1] N. Dryden, R. Böhringer, T. Ben-Nun, and T. Hoefler, "Clairvoyant Prefetching for Distributed Machine Learning I/O," Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), 2021.

Distributed Deep Learning in HPC

• However, the optimizations in computation and communication, along
with the development of modern computational accelerators and
network technologies, have shifted the bottleneck towards I/O.

• I/O accounts for 67-85% of total training time[1] .
• Training ResNet50 on ImageNet: 85% of training runtime is IO overhead

67-85% of I/O

Computation

Computation

6

Background

SOGANG UNIVERSITY

7

Characteristics of Deep Learning Image Dataset

• “Large Number of Small Files”
• ImageNet-1K: 1.28 million images (-150KB)
• ImageNet-21K: 11 million images (-163KB)
• OpenImages: 9 million images (-150KB)
• Google Landmarks Dataset v2: 5 million images (-200KB)
• Places365: 10 million images (-150KB)

• The HPC I/O subsystem is not designed to efficiently handle the large-
scale data I/O access required by deep learning frameworks.

Background

SOGANG UNIVERSITY

[2] Y. Zhu, "Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems," Proceedings of the IEEE 26th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 2018.

Optimizing I/O for Deep Learning Workloads

• NoPFS[1]

• Optimizes prefetching and caching by predicting data access patterns, reducing
latency in training I/O.

• DeepIO[2]

• Minimizes backend storage reads by keeping data in memory, focusing on reducing
read latency and boosting I/O efficiency for distributed training.

• HVAC[3]

• Caches data on node-local NVMe, specifically reducing repetitive I/O reads during
training.

[3] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning Applications,"
Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

8

Background

SOGANG UNIVERSITY

HVAC: High-Velocity AI Cache

• HVAC, a transparent read-only caching layer for large-scale supercomputers using
node-local NVMe.

• Scalability
• Designed to scale across thousands of compute nodes on leadership-class

supercomputers like Summit and Frontier.
• Avoids additional metadata bottlenecks and storage overhead.

• Client-Server Library Architecture
• Intercepts <open-read-close> file I/O operations via LD_PRELOAD using a shared

library approach.
• Data is cached to distributed node-local storage.
• Utilizes distributed hashing to determine the location of cached content across

nodes. → No Repeated Access to PFS

9

Background

SOGANG UNIVERSITY

HVAC Overview

• HVAC Server
• Builds a caching layer on node-local fast

storage.
• Handles system calls forwarded by HVAC

clients.
• Reads files from node-local storage if

available, or retrieves files from the PFS and
caches them to node-local storage.

• HVAC Client
• Intercepts system calls directed to the PFS

and redirects them to the HVAC server.

10

Background

SOGANG UNIVERSITY

[4] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-Performance Computing Systems," IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp.
337-350, Oct.-Dec. 2010.

Increasing Node Failures in HPC and AI Workloads

• Node Failure Rates Rise with Complexity
• Larger, more complex HPC systems have higher node

failure rates.
• Failure rates scale with system size, increasing linearly as

more processors are added[4] .

• Intensive Workloads Increase Failure Probability
• High-demand tasks, such as large-scale deep learning

jobs, also increase the risk of failure.
• Running multiple nodes for deep learning exacerbates

the likelihood of failure event.

11

Background

SOGANG UNIVERSITY

Increasing Node Failures in HPC and AI Workloads

• Node Failure Rates Rise with Complexity
• Larger, more complex HPC systems have higher node

failure rates.
• Failure rates scale with system size, increasing linearly as

more processors are added[4] .

• Intensive Workloads Increase Failure Probability
• High-demand tasks, such as large-scale deep learning

jobs, also increase the risk of failure.
• Running multiple nodes for deep learning exacerbates

the likelihood of failure event.

However, HVAC currently lacks fault tolerance support, which
limits its resilience in handling node failures.

12[4] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-Performance Computing Systems," IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp.
337-350, Oct.-Dec. 2010.

Background

SOGANG UNIVERSITY

Failures in HVAC

• Even a single node failure can halt the entire training process,
despite fault-tolerance support in the DL framework.

• E.g. Elastic Scaling - Horovod Elastic Run, MPI ULFM

• This happens because I/O flows are controlled by HVAC.
→ The job must be restarted.

13

Background

SOGANG UNIVERSITY

Failures in HVAC

• Even a single node failure can halt the entire training process,
despite fault-tolerance support in the DL framework.

• E.g. Elastic Scaling - Horovod Elastic Run, MPI ULFM

• This happens because I/O flows are controlled by HVAC.
→ The job must be restarted.

14

Background

Therefore, it is crucial to ensure fault tolerance in the HVAC
layer to prevent training interruptions!

SOGANG UNIVERSITY

Naïve Approach

• Because HVAC functions as a caching layer, the original data
resides in the PFS.

• I/O requests to failed nodes → redirected to PFS!

PFS

HVAC
Server 1

HVAC
Server 2

HVAC
Server 3

NVMe Copy

Original Data

15

Background

SOGANG UNIVERSITY

I/O Redirection to PFS

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

Redirection to

PFS

“failure”

16

Background

SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

• 22 mins per epoch x 5 epochs →
nearly 2 hours

• Partial data reads from PFS still
cause delays

PFS Epoch NVMe Epoch

Ep
o

ch
 t

im
e

(m
in

s)

0

20

40

60

80

100

120

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

22mins, 23%

17

Background

“Frequent future PFS access”

SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

• 22 mins per epoch x 5 epochs →
nearly 2 hours

• Partial data reads from PFS still
cause delays

• Straggler Problem: Even if a few
nodes access PFS, deep learning
synchronization at each iteration
forces other nodes to wait →
reducing parallelism and
scalability.PFS Epoch NVMe Epoch

Ep
o

ch
 t

im
e

(m
in

s)

0

20

40

60

80

100

120

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

22mins, 23%

18

Background

“Frequent future PFS access”

SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

• 22 mins per epoch x 5 epochs →
nearly 2 hours

• Partial data reads from PFS still
cause delays

• Straggler Problem: Even if a few
nodes access PFS, deep learning
synchronization at each iteration
forces other nodes to wait →
reducing parallelism and
scalability.

• Job Time Limitations: Risk of
exceeding pre-defined job time.

PFS Epoch NVMe Epoch

Ep
o

ch
 t

im
e

(m
in

s)

0

20

40

60

80

100

120

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

22mins, 23%

19

Background

“Frequent future PFS access”

SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

• 22 mins per epoch x 5 epochs →
nearly 2 hours

• Partial data reads from PFS still
cause delays

• Straggler Problem: Even if a few
nodes access PFS, deep learning
synchronization at each iteration
forces other nodes to wait →
reducing parallelism and
scalability.

• Job Time Limitations: Risk of
exceeding pre-defined job time.

PFS Epoch NVMe Epoch

Ep
o

ch
 t

im
e

(m
in

s)

0

20

40

60

80

100

120

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

22mins, 23%

20

Background

“Frequent future PFS access”

“Re-caching Mechanism”
Read from PFS once, then access re-cached data for future requests

SOGANG UNIVERSITY

Challenge: Handling Data Redistribution

• Original HVAC Implementation - Static Hash Partitioning
• Data paths are converted to key values and distributed across nodes using a modulo

operation.
• On node failure, recalculating hash values for N−1 nodes causes extensive data

redistribution.

PFS PFS

21

Background

SOGANG UNIVERSITY

Challenge: Handling Data Redistribution

• Additional Hash Functions
• Reduces data movement but doesn’t address multiple unpredictable failures.

• Range Partitioning
• Can handle multiple node failures, but balancing data distribution remains

challenging.

“Load Imbalance”

22

Background

SOGANG UNIVERSITY

Problem Definition

• How can we track data locations that change after re-caching?
• How can we redistribute lost data evenly across remaining active nodes?

23

Problem Definition

SOGANG UNIVERSITY

Design & Implementation

24

SOGANG UNIVERSITY

Design of FT-HVAC

• FT-HVAC: An I/O accelerated caching framework with fault
tolerance for large-scale distributed deep learning.

25

Design

SOGANG UNIVERSITY

Design of FT-HVAC

• FT-HVAC: An I/O accelerated caching framework with fault
tolerance for large-scale distributed deep learning.

1. Enable fault tolerance in HVAC.
2. Implement data recaching within the HVAC layer to ensure

data availability and quick access during node failures.
3. Achieve load-balanced data recaching.

26

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

• Hash Ring Mechanism

<Before Failure>

Node 0

Node 1

Node 2

Virtual nodes

0.000

0.375

0.125

0.500

0.875

0.625

File A

File E

0.083427

0.293853

… …

0.375

Node Table Hash Table

27

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

• Hash Ring Mechanism

<Before Failure>

Node 0

Node 1

Node 2

Virtual nodes

0.000

0.375

0.125

0.500

0.875

0.625

File A

File E

0.083427

0.293853

… …

0.375

Node Table Hash Table

28

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

• Hash Ring Mechanism

<Before Failure>

Node 0

Node 1

Node 2

Virtual nodes

0.000

0.375

0.125

0.500

0.875

0.625

File A

File E

0.083427

0.293853

… …

Node Table Hash Table

“Failure at Node 1”

0.375

29

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

• Hash Ring Mechanism

<After Failure>

Node 0

Node 1

Node 2

Virtual nodes

0.000

0.375

0.125

0.500

0.875

0.625

File A

File E

0.083427

0.293853

… …

Node Table Hash Table

30

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

“Intercepted”

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

1. Read

request

31

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

2. Request to

Server

32

Design

SOGANG UNIVERSITY

“failure”

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

3. Timed out

33

Design

SOGANG UNIVERSITY

“failure”

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

3. Timed out

“Remove the failed node
from the hash ring”

34

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

4. Retry hash

calculation

35

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

5. Checks the

data

“missing”

36

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

6. Reads from PFS

(1)

(2)

E

37

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

E
6. Reads from PFS

(1)

(2)

E

7. Recache

“Copy the data to NVMe in the
background”

38

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

39

Design

SOGANG UNIVERSITY

Evaluation

40

SOGANG UNIVERSITY

Node Failure Analysis on Frontier

• Analyzed job scheduler logs for six months following the production
launch of the ORNL’s Frontier cluster.

• Focused on three types of job failures: “Job Fail”, “Node Fail”, and
“Timeout”.

• Job Fail: Due to code errors,
data/environment issues, or external
malfunctions.

• Node Fail: Caused by hardware,
network, software bugs, or overload.

• Timeout: Job exceeded set time limit,
often due to complexity or
resource/network constraints.

41

Evaluation

SOGANG UNIVERSITY

Node Failure Analysis on Frontier

• Average Runtime of Failed Jobs on Frontier

• Failed jobs typically run for an
average of over 1 hour,
sometimes reaching 2-3 hours.

• Long-running job failures →
significant loss of computing
resources and time.

• Job failures have occurred
consistently on a weekly basis.

42

Evaluation

SOGANG UNIVERSITY

Node Failure Analysis on Frontier

• Relationships between types of job failures and system variables.

• (a) As the number of nodes
increases, the rate of "Node
Failures" also rises.

• E.g. With 7,750–9,300 nodes,
"Node Failures" are 46.04% of
failures; including "Timeouts,"
they total 78.60%.

• (b) Execution time does not
significantly impact the
proportion of failure types.

43

Evaluation

SOGANG UNIVERSITY

Node Failure Analysis on Frontier

• Relationships between types of job failures and system variables.

• (a) As the number of nodes
increases, the rate of "Node
Failures" also rises.

• E.g. With 7,750–9,300 nodes,
"Node Failures" are 46.04% of
failures; including "Timeouts,"
they total 78.60%.

• (b) Execution time does not
significantly impact the
proportion of failure types.

Failures are highly frequent in large-scale HPC systems,
Software systems that are not designed to handle such failures are especially

vulnerable, often resulting in significant, unavoidable losses
44

Evaluation

SOGANG UNIVERSITY

Experimental Setup

• Application: Cosmoflow- MLPerf
HPC v0.5 benchmark

• Framework: Horovod Elastic Run
• Dataset: 1.3TB cosmoUniverse

dataset from NERSC ExaLearn
group (524,288 training samples,
65,536 validation samples).

• File System: Orion (Lustre).
• Training Setup: 5 epochs, with 5

random failures injected after the
first epoch.

45

Evaluation

SOGANG UNIVERSITY

Overhead Analysis

• Comparison between the original HVAC (NoFT) and two fault-tolerant
approaches (FT w/PFS, FT w/NVMe) without any failure events.

• Overhead was minimal, with a maximum of
1-minute increase.

• Overhead resulted from additional data
structures and conditional checks for the
fault detection algorithm.

46

Evaluation

SOGANG UNIVERSITY

Overall Performance

• Performance evaluation with failure events.

• Comparison to No Failure Scenario
• FT w/PFS:

• 64 nodes: 32.2% increase in training time.

• 1024 nodes: 68.7% increase in training time.

• FT w/NVMe:
• 64 nodes: 12.5% increase in training time.

• 1024 nodes: 26.7% increase in training time.

47

Evaluation

SOGANG UNIVERSITY

Overall Performance

• Performance evaluation with failure events.

• Comparison to No Failure Scenario
• FT w/PFS:

• 64 nodes: 32.2% increase in training time.

• 1024 nodes: 68.7% increase in training time.

• FT w/NVMe:
• 64 nodes: 12.5% increase in training time.

• 1024 nodes: 26.7% increase in training time.
FT w/ NVMe offers reduction in training time compared with FT w/ PFS, from 14.9%

to 24.9% as the number of nodes increases, as NVMe accesses the PFS only once
following a failure, while FT with PFS requires repeated accesses.

48

Evaluation

SOGANG UNIVERSITY

Load Balance Analysis

49

Evaluation

• In a 1024-node configuration with 100 virtual nodes per physical node, a
single node failure redistributes data to an average of 80 nodes.

SOGANG UNIVERSITY

Load Balance Analysis

• Simulation Setup: Conducted 500
simulations considering a 1024-node
configuration.

• The Receiver Node metric represents
the number of nodes receiving
redistributed data.

• Increasing the number of virtual
nodes improves data distribution but
efficiency plateaus beyond 500.

50

Evaluation

• Analysis of varying virtual nodes per physical node to assess data
distribution during failures.

SOGANG UNIVERSITY

Conclusion

• Node failures are common in leading-edge supercomputers.
• Such failures pose a high risk to DL applications on large-scale systems.
• FT-HVAC is a fault-tolerant, I/O-accelerated caching framework for

distributed DL.
• FT-HVAC has demonstrated effective fault handling across 1024 nodes.
• The Elastic Recaching approach reduced training time by up to 24.9%

compared to the I/O redirection method, while maintaining effective
load balancing.

51

Conclusion

SOGANG UNIVERSITY

Questions?

• Seoyeong Lee / sylee2519@gmail.com
• Data-Intensive Computing & Systems Laboratory /

https://discos.sogang.ac.kr

52

<Camera-ready paper>

mailto:sylee2519@gmail.com
https://discos.sogang.ac.kr/

	Slide 1: Fault-Tolerant Deep Learning Cache with Hash Ring for Load Balancing in HPC Systems
	Slide 2: Contents
	Slide 3: Background
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Design & Implementation
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Evaluation
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

