a‘.. .
......

-
-

Memory Cache

2 — X ta
@ c 0 3
Q. 3 Q = 3
85 2% :

: = O o g
T .5 <= I

Challenge: Solve more large problems per day on your HPC system

You decide to:
* Reduce the time needed to solve large problems by adding a cache

* |ncrease concurrent usage of the system by sharing resources between users

High speed interconnect (Slingshot)

Parallel distributed persistent storage (DAOS)

However, your system has thousands of nodes and long-running workloads

Long-running, interactive
workloads:

Resource demands may
vary over time
Vulnerable to node failure

A,

'“ Fixed resource allocation can lead

to resource stranding and/or
-“ under-provisioning

A,

Thousands of nodes:
* Locality challenging
* |ncreased chance of node failure

Compute
Node

llllllllllllll 3
lllll

Parallel distributed persistent storage (DAOS)

Performant data and computation tier toade up dynamic mixed workloads
without stranding resources

Manages data-movement, caching policies and data locality for the distributed volatile cache.

- Applications

Resilient runtime

Offloads operations to workers
based on data affinity.
Resilience to node failure.

Globally-visible cache for cross-
node data sharing.
Local SSDs for data spillover.

Compute
Node

| ™
0 ™
5| &
o Q
c c
o I
E £
9 o
LY
o; :
1]
B (]
L] (9]

spill-over
tier
High speed interconnect (Slingshot)

Qur solution

Existing components

Parallel distributed persistent storage (DAOS)

Potential impact of global shared cache

—d—Two-layered =+=Single-layered =—®=Vanilla DAOS —a#—Two-layered =>e=Single-layered =—®=Vanilla DAOS

~~
o
oh]
7]
T
m
Q0
L
.'_
3
o
L
o
=
O
—
i
}_

Data access size Data access size
(a) Y-axis: absolute numbers (b) Y-axis: log-scale numbers

Experimental Set-Up:
Local cache capacity to be 90% of the working set

Remote cache emulated using 1 OpenFAM server (two-socket AMD EPYC 7763 64-
Core Processor, 4 TiB DRAM)
1 DAOS client node (two-socket AMD EPYC 7763 64-Core Processor, 1 TiB DRAM).
1 DAOS storage server node (two-socket Intel(R) Xeon(R) Platinum 8380 CPU, 4 TiB

DRAM, 3 Kioxia CD6 6.4 TB NVMe SSDs.
Vanilla DAOS Single-layered caching Two-layered caching SllngShOt interconnect (Sing|e 200 Gb NIC per nOde).

Resilient Runtime for Offloading

Python program loads Python Application
interceptor before importing (TitaniumRattlesnake interceptor loaded)
target Python module.

%load_ext tr_ interceptor
import pandas

Python interceptor sends an

RPC through a Broker to a Applications with TR interceptors
Runtime Manager

RTM - Runtime Manager
CM — Cache Manager
MSL — Module-Specific Library
WL - Worker Library
=) ZeroMQ
= Mercury

Runtime Manager loads appropriate
module-specific library, identifies
locality opportunities, then sends

tasks to workers.

2|
—'
!

Worker 10 iH %

Resilient Runtime

As workers complete tasks, they log
task status so that work can be

TR Cache) .
recovered in case of failure

Parallel Distributed Object Store

C\-

Questions

Outline

TitaniumRattlesnake augments storage with a performant data and computation tier.

ChallengeSolve more large problems per day on your HPC system
Global shared distributed cache mitigates locality challenge
Resilient runtime for offloading improves locality and sharing

Resilient runtime also protects against node failure

	 A Global In-Memory Cache and Computation Tier for DAOS
	Challenge: Solve more large problems per day on your HPC system
	However, your system has thousands of nodes and long-running workloads
	Performant data and computation tier to scale up dynamic mixed workloads without stranding resources
	Potential impact of global shared cache
	Resilient Runtime for Offloading
	Questions?
	Outline

