
Accessing Serialized Data Fromats with GPU-Initiated I/O
Luke Logan
Illinois Tech

United States of America
llogan@hawk.illinoistech.edu

Anthony Kougkas
Illinois Tech

United States of America
akougkas@illinoistech.edu

Xian-He Sun
Illinois Tech

United States of America
sun@illinoistech.edu

1 Introduction
GPUs have increasingly become the primary processors for scien-
tific data exploration and analysis through general purpose pro-
gramming models such as CUDA. However, GPU kernels continue
to lack I/O interfaces and typically assume the CPU serves as the
primary controller for program logic and data movement. In con-
ventional GPU computing paradigms, the CPU is responsible for
reading data from storage and orchestrating transfers to GPU mem-
ory. This CPU-initiated I/O introduces several critical limitations:
increased development complexity due to explicit memory man-
agement, reduced scalability as CPU resources become bottlenecks,
and suboptimal resource utilization due to the use of DRAM for
transferring data between CPU and GPU [1, 2]. Ideally, GPU kernels
should also have I/O interfaces that allow them to access data from
storage.

Recent research efforts have began addressing these limitations.
NVIDIA’S Magnum I/O offers a data path that allows CPUs to trans-
fer data directly from NVMe to GPU memory, bypassing DRAM
bounce buffers. Many systems and I/O libraries support Magnum
I/O, such as HDF5. However, these approaches cannot be called di-
rectly within GPU code. To address this, various works have began
exploring GPU-initiated I/O, where GPU kernels are extended to
have I/O interfaces. BaM [2] provides an interface that allows GPUs
to submit I/O commands directly to NVMes using a custom kernel
module. GeminiFS [1] expands this to a specialized filesystem for
NVMe SSDs designed to leverage GPU parallelism.

While existing GPU-initiated approaches can offer performance
and programmability improvements in certain cases, they all face
a fundamental challenge: they do not directly support access to
complex serialized data formats within GPU kernels. Scientific ap-
plications typically store data in serialized formats such as HDF5,
NetCDF, ADIOS, and Parquet to ensure data longevity and porta-
bility. Current GPU-driven storage systems assume that GPU ker-
nels will handle raw data interpretation, which would require sub-
stantial reimplementation of existing I/O libraries and data format
parsers—a prohibitively complex undertaking for formats like HDF5
that involve intricate metadata structures, compression schemes,
and hierarchical organization.

This work explores the viability of accessing serialized data
formats through GPU-initiated I/O transfers to a specialized, multi-
threaded runtime executing on the CPU. We study the overhead
of the GPU-to-CPU communication process and assess the initial
scalability properties of this hybrid approach. While this design
requires CPU involvement, it enables GPU kernels to seamlessly
access complex serialized data formats without requiring extensive
library reimplementation or sacrificing the rich functionality of
existing data format ecosystems. This also enables support for
storage devices where direct access by GPU is not always possible,
such as SATA SSDs, HDDs, and many parallel filesystems. As future

work, we are exploring reimplementations of popular I/O libraries
to enable GPUs to directly access serialized data formats natively
and integrate with programming frameworks such as kokkos.

2 Initial Results

Figure 1: Performance comparison of GPU-Initiated I/O to
CPU-driven for 1MB transfer size

To evaluate the viability of our approach, we conducted a prelim-
inary performance analysis comparing GPU-initiated I/O transfers
against traditional CPU-initiated data movement for sequential
write workloads to HDF5 files. Our experimental testbed consists
of an NVIDIA GeForce RTX 4070 GPU paired with a 16-core CPU
system. We vary the CPU-side I/O runtime threads (1-32) to cover
typical scientific computing access patterns. We keep the number
of GPU threads equal to the number of CPU threads. We use a 1MB
transfer size for the I/O. Each benchmark configuration runs for 25
seconds to ensure statistical significance and account for system
warm-up effects. From Figure 1, our preliminary results demon-
strate that the GPU-initiated I/O approach maintains competitive
performance with traditional CPU-initiated transfers, exhibiting
overhead less than 5% across all tested configurations. The main
overhead is only the PCIe bus latency for the task transfer from
GPU to CPU, which is minimal compared to the I/O cost. This
suggests that the hybrid architecture successfully bridges the gap
between GPU computational capabilities and complex serialized
data access without introducing prohibitive performance penal-
ties. These initial findings indicate that GPU kernels can effectively
coordinate with CPU-based I/O runtimes for accessing serialized
data, providing a foundation for more comprehensive evaluation
and optimization in future work. Note that HDF5 decreases in
performance with thread counts due to a global lock required for
synchronization, which is expected.

References
[1] Shi Qiu, Weinan Liu, Yifan Hu, Jianqin Yan, Zhirong Shen, Xin Yao, Renhai Chen,

Gong Zhang, and Yiming Zhang. 2025. GeminiFS: A Companion File System
for GPUs. In 23rd USENIX Conference on File and Storage Technologies (FAST 25).
USENIX Association, Santa Clara, CA, 221–236.

[2] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna
Masood, Jeongmin Park, Jinjun Xiong, Chris J Newburn, Dmitri Vainbrand, I-Hsin



Logan et al.

Chung, et al. 2023. GPU-initiated on-demand high-throughput storage access
in the BaM system architecture. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2. ACM, 325–339.


	1 Introduction
	2 Initial Results
	References

